Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38284411

RESUMEN

In this work, an innovative and accurate affinity capillary electrophoresis (ACE) method was set up to monitor the complexation of aqueous MIP nanogels (NGs) with model cancer-related antigens. Using α2,6'- and α2,3'-sialyllactose as oversimplified cancer biomarker-mimicking templates, NGs were synthesized and characterized in terms of size, polydispersity, and overall charge. A stability study was also carried out in order to select the best storage conditions and to ensure product quality. After optimization of capillary electrophoresis conditions, injection of MIP NGs resulted in a single, sharp, and efficient peak. The mobility shift approach was applied to quantitatively estimate binding affinity, in this case resulting in an association constant of K ≈ 106 M-1. The optimized polymers further displayed a pronounced discrimination between the two sialylated sugars. The newly developed ACE protocol has the potential to become a very effective method for nonconstrained affinity screening of NG in solution, especially during the NG development phase and/or for a final accurate quantitation of the observed binding.

2.
Chemistry ; : e202401232, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848047

RESUMEN

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE), to rapidly assess an affinity ranking. Finally, the best monomer 2-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant≈106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.

3.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614241

RESUMEN

Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Neoplasias Óseas/patología , Osteosarcoma/patología , Microambiente Tumoral
4.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108089

RESUMEN

Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50-60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis. Differential diagnosis is challenging due to their heterogeneous morphology, with UPS remaining a diagnosis of exclusion for sarcomas with unknown differentiation lineage. Moreover, both lesions suffer from the unavailability of diagnostic and prognostic biomarkers. In this context, a genomic approach combined with pharmacological profiling could allow the identification of new predictive biomarkers that may be exploited for differential diagnosis, prognosis and targeted therapy, with the aim to improve the management of STS patients. RNA-Seq analysis identified the up-regulation of MMP13 and WNT7B in UPS and the up-regulation of AKR1C2, AKR1C3, BMP7, and SGCG in MFS, which were confirmed by in silico analyses. Moreover, we identified the down-regulation of immunoglobulin genes in patient-derived primary cultures that responded to anthracycline treatment compared to non-responder cultures. Globally, the obtained data corroborated the clinical observation of UPS as an histotype refractory to chemotherapy and the key role of the immune system in determining chemosensitivity of these lesions. Moreover, our results confirmed the validity of genomic approaches for the identification of predictive biomarkers in poorly characterized neoplasms as well as the robustness of our patient-derived primary culture models in recapitulating the chemosensitivity features of STS. Taken as a whole, this body of evidence may pave the way toward an improvement of the prognosis of these rare diseases through a treatment modulation driven by a biomarker-based patient stratification.


Asunto(s)
Fibrosarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Sarcoma/diagnóstico , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Neoplasias de los Tejidos Blandos/patología , Extremidades/patología , Genómica
5.
Molecules ; 28(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894644

RESUMEN

Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.


Asunto(s)
Péptidos , Péptidos/uso terapéutico , Péptidos/química , Técnicas de Química Sintética , Preparaciones Farmacéuticas
6.
BMC Genomics ; 23(1): 142, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35172717

RESUMEN

BACKGROUND: Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has been shown to be downregulated in osteosarcoma and in cancer in general. RESULTS: To investigate if the mir-486 locus is epigenetically regulated, we integrated DNA methylation and miR-486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. A CpG island in the promoter of the ANK1 host gene of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient samples, xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2'-deoxycytidine treatment of osteosarcoma cell lines caused induction of miR-486-5p and ANK1, indicating common epigenetic regulation in osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology. CONCLUSIONS: miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma, and this knowledge contributes to the understanding of osteosarcoma biology.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología
7.
Cancer ; 128(10): 1958-1966, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35201621

RESUMEN

BACKGROUND: According to retrospective osteosarcoma series, ABCB1/P-glycoprotein (Pgp) overexpression predicts for poor outcomes. A prospective trial to assess a risk-adapted treatment strategy using mifamurtide in Pgp+ patients was performed. METHODS: This was a phase 2, multicenter, uncontrolled trial including patients 40 years old or younger with nonmetastatic extremity high-grade osteosarcoma stratified according to Pgp expression. All patients received high-dose methotrexate, doxorubicin, and cisplatin (MAP) preoperatively. In Pgp+ patients, mifamurtide was added postoperatively and combined with MAP for a good histologic response (necrosis ≥ 90%; good responders [GRs]) or with high-dose ifosfamide (HDIFO) at 3 g/m2 /d on days 1 to 5 for a histologic response < 90% (poor responders [PRs]). Pgp- patients received MAP postoperatively. After an amendment, the cumulative dose of methotrexate was increased from 60 to 120 g/m2 (from 5 to 10 courses). The primary end point was event-free survival (EFS). A postamendment analysis was performed. RESULTS: In all, 279 patients were recruited, and 194 were included in the postamendment analysis: 70 (36%) were Pgp-, and 124 (64%) were Pgp+. The median follow-up was 51 months. For Pgp+ patients, 5-year EFS after definitive surgery (null hypothesis, 40%) was 69.8% (90% confidence interval [CI], 62.2%-76.2%): 59.8% in PRs and 83.7% in GRs. For Pgp- patients, the 5-year EFS rate was 66.4% (90% CI, 55.6%-75.1%). CONCLUSIONS: This study showed that adjuvant mifamurtide, combined with HDIFO for a poor response to induction chemotherapy, could improve EFS in Pgp+ patients. Overall, the outcomes compared favorably with previous series. Mifamurtide and HDIFO as salvage chemotherapy are worth further study.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/uso terapéutico , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/cirugía , Niño , Supervivencia sin Enfermedad , Extremidades/patología , Humanos , Ifosfamida , Italia , Metotrexato , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/cirugía , Estudios Prospectivos , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
8.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233089

RESUMEN

Cisplatin (CDDP) is a drug for high-grade osteosarcoma (HGOS) treatment. Several germline pharmacogenetic studies have revealed associations between single nucleotide polymorphisms (SNPs) and CDDP-based therapy response or CDDP-related toxicity in patients with HGOS. Whether these variants could play a biological role in HGOS cells has not been studied so far. The aim of this study was to explore 28 SNPs of 14 genes in 6 CDDP-resistant and 12 drug-sensitive human HGOS cell lines. An innovative multimodal targeted next generation sequencing (mmNGS) approach with custom primers designed for the most commonly reported SNPs of genes belonging to DNA repair, CDDP transport or detoxification, or associated with CDPP-related toxicity was applied. The mmNGS approach was validated by TaqMan genotyping assays and emerged to be an innovative, reliable tool to detect genetic polymorphisms at both the DNA and RNA level. Allele changes in three SNPs (ERCC2 rs13181 and rs1799793, ERCC1 rs11615) were identified on both DNA and RNA derived libraries in association with CDDP resistance. A change of the GSTP1 rs1695 polymorphism from AA to AG genotype was observed in the RNA of all six CDDP-resistant variants. These SNPs emerged to be causally associated with CDDP resistance in HGOS cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Línea Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Farmacogenética , Polimorfismo de Nucleótido Simple , ARN , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
9.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457197

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-ß (Aß)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aß aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aß42 oligomers (Aß42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aß42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aß42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aß42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Muerte Celular , Curcumina/uso terapéutico , Humanos , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo
10.
Molecules ; 27(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566127

RESUMEN

In the last few years, nanomaterials based on fullerene have begun to be considered promising tools in the development of efficient adjuvant/delivery systems for vaccination, thanks to their several advantages such as biocompatibility, size, and easy preparation and modification. In this work we reported the chemoenzymatic synthesis of natural polymannan analogues (di- and tri-mannan oligosaccharides characterized by α1,6man and/or α1,2man motifs) endowed with an anomeric propargyl group. These sugar derivatives were submitted to 1,3 Huisgen dipolar cycloaddition with a malondiamide-based chain equipped with two azido terminal groups. The obtained sugar-modified malondiamide derivatives were used to functionalize the surface of Buckminster fullerene (C60) in a highly controlled fashion, and yields (11-41%) higher than those so far reported by employing analogue linkers. The same strategy has been exploited to obtain C60 endowed with natural and unnatural amino acid derivatives. Finally, the first double functionalization of fullerene with both sugar- and amino acid-modified malondiamide chains was successfully performed, paving the way to the possible derivatization of fullerenes with immunogenic sugars and more complex antigenic peptides.


Asunto(s)
Fulerenos , Aminoácidos , Fulerenos/química , Compuestos Orgánicos , Péptidos , Azúcares
11.
Cell Mol Life Sci ; 76(3): 609-625, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30430199

RESUMEN

Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). We recently identified a library of H2S-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells. Here we investigated the molecular mechanisms of the higher efficacy of Sdox in human osteosarcoma cells with increasing resistance to doxorubicin. Differently from doxorubicin, Sdox preferentially accumulated within the endoplasmic reticulum (ER), and its accumulation was only modestly reduced in Pgp-expressing osteosarcoma cells. The increase in doxorubicin resistance was paralleled by the progressive down-regulation of genes of ER-associated protein degradation/ER-quality control (ERAD/ERQC), two processes that remove misfolded proteins and protect cell from ER stress-triggered apoptosis. Sdox, that sulfhydrated ER-associated proteins and promoted their subsequent ubiquitination, up-regulated ERAD/ERQC genes. This up-regulation, however, was insufficient to protect cells, since Sdox activated ER stress-dependent apoptotic pathways, e.g., the C/EBP-ß LIP/CHOP/PUMA/caspases 12-7-3 axis. Sdox also promoted the sulfhydration of Pgp that was subsequently ubiquitinated: this process further enhanced Sdox retention and toxicity in resistant cells. Our work suggests that Sdox overcomes doxorubicin resistance in osteosarcoma cells by at least two mechanisms: it induces the degradation of Pgp following its sulfhydration and produces a huge misfolding of ER-associated proteins, triggering ER-dependent apoptosis. Sdox may represent the prototype of innovative anthracyclines, effective against doxorubicin-resistant/Pgp-expressing osteosarcoma cells by perturbing the ER functions.


Asunto(s)
Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Antibióticos Antineoplásicos/uso terapéutico , Apoptosis , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Humanos , Immunoblotting , Concentración 50 Inhibidora , Reacción en Cadena de la Polimerasa
12.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629971

RESUMEN

High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.


Asunto(s)
Neoplasias Óseas/genética , Osteosarcoma/genética , Animales , Antineoplásicos/efectos adversos , Neoplasias Óseas/tratamiento farmacológico , Marcadores Genéticos , Humanos , Osteosarcoma/tratamiento farmacológico , Farmacogenética , Polimorfismo Genético , Sarcoma Experimental , Investigación Biomédica Traslacional
13.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599901

RESUMEN

Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Osteosarcoma/tratamiento farmacológico , ARN Nucleolar Pequeño/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proliferación Celular , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Células Tumorales Cultivadas
14.
Expert Opin Emerg Drugs ; 24(3): 153-171, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31401903

RESUMEN

Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Ensayos Clínicos como Asunto , Diseño de Fármacos , Humanos
15.
J Org Chem ; 84(23): 15726-15734, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31693859

RESUMEN

Azabicyclo[4.3.0]- and [5.3.0]alkanone amino acid derivatives were easily prepared by submitting the same starting dipeptide to a direct ring-closing enyne metathesis or an ethylene-mediated cross-enyne metathesis/ring-closing metathesis, respectively. The reactivity of the newly synthesized 6,5- and 7,5-fused bicyclic scaffolds was then investigated to obtain variously functionalized derivatives with potential applications in the field of peptides/peptidomimetics.

16.
Int J Cancer ; 142(8): 1594-1601, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29210060

RESUMEN

Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR = 1.76; 95% CI 1.41-2.18, p = 4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR = 1.9; 95% CI 1.5-2.4; p = 1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Interleucina-33/genética , Osteosarcoma/genética , Osteosarcoma/mortalidad , Adulto , Alelos , Brasil , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Modelos de Riesgos Proporcionales , Tasa de Supervivencia , Población Blanca/genética
17.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463350

RESUMEN

Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.


Asunto(s)
Sistemas de Liberación de Medicamentos , Queratinas/química , Nanotecnología , Osteosarcoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Osteosarcoma/patología , Paclitaxel/farmacología
18.
J Org Chem ; 82(20): 11091-11101, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28953382

RESUMEN

7,5-Fused azabicycloalkane scaffolds, carrying a quaternary stereocenter at C3 position of the lactam ring, can act as effective reverse-turn mimics and have proven to be useful intermediates for the preparation of Arg-Gly-Asp (RGD)-based cyclopentapeptides (cRGD) with nanomolar activity as αvß3/αvß5 integrin antagonists. Here, we report the synthesis of new azabicycloalkane scaffolds endowed at the C6 position with a para-substituted phenethyl side chain, which could be exploited to obtain cRGD-based bioconjugates that may find promising applications in anticancer therapy. By performing a domino cross enyne metathesis/ring-closing metathesis (CEYM/RCM) in the presence of styrene derivatives, followed by catalytic hydrogenation of the diene system, we easily converted a dipeptide precursor into the desired C6-functionalized azabicycloalkane scaffolds. The presence of a suitably protected p-amino group on the styrene moiety could be exploited, after deprotection, either to directly conjugate a bioactive compound or to introduce a suitable spacer between the cRGD unit and the bioactive compound.

19.
Pharmacol Res ; 113(Pt A): 55-61, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27498157

RESUMEN

Integrin-mediated signaling pathways have been found to promote the invasiveness and survival of glioma cells by modifying the brain microenvironment to support the formation of the tumoral niche. A variety of cells in the niche express integrin receptors, including tumor-associated macrophages, fibroblasts, endothelial cells and pericytes. In particular, RGD-binding integrins have been demonstrated to have an important role in the epithelial-mesenchymal transition process, considered the first step in the infiltration of tissue by cancer cells and molecular markers of which have been found in glioma cells. In simultaneous research, Small Molecule Integrin Antagonists (SMIA) yielded initially promising results in in vitro and in vivo studies, leading to clinical trials to test their safety and efficacy in combination with other anticancer drugs in the treatment of several tumor types. The initially high expectations, especially because of their antiangiogenic activity, which appeared to be a winning strategy against GBM, were not confirmed and this cast serious doubts on the real benefits to be gained from the use of SMIA for the treatment of cancer in humans. In this review, we provide an overview of recent findings concerning the functional roles of integrins, especially RGD-binding integrins, in the processes related to glioma cells survival and brain tissue infiltration. These findings disclose a new scenario in which recently developed SMIA might become useful tools to hinder glioblastoma cell dissemination.


Asunto(s)
Glioblastoma/metabolismo , Integrinas/metabolismo , Transducción de Señal/fisiología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transición Epitelial-Mesenquimal/fisiología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Humanos
20.
Histopathology ; 67(3): 338-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25600168

RESUMEN

AIMS: To evaluate the clinical impact of excision repair cross-complementation group 1 (ERCC1) expression in high-grade osteosarcoma (OS). METHODS AND RESULTS: Immunohistochemistry was performed on biopsies from 99 OS patients enrolled in the ISG/OS-Oss training set or ISG/SSG1 validation set neoadjuvant chemotherapy protocols, based on the use of cisplatin, adriamycin, methotrexate, and ifosfamide. In the training set, ERCC1 positivity was found in eight of 31 (26%) patients, and was significantly associated with worse event-free survival (EFS) (P = 0.042) and overall survival (OVS) (P = 0.001). In the validation set, ERCC1 positivity was found in 22 of 68 (32%) patients, and its significant associations with poorer EFS (P = 0.028) and OVS (P = 0.022) were confirmed. Multivariate analyses performed on the whole patient series indicated that ERCC1 positivity was the only marker that was significantly associated with a higher risk of worse prognosis, in terms of both EFS and OVS (P = 0.013). Co-evaluation of ERCC1 and ABCB1 expression showed that patients who were positive for both markers had a significantly worse prognosis. CONCLUSIONS: The ERCC1 level at diagnosis is predictive for the outcome of patients with non-metastatic, high-grade OS treated with neoadjuvant chemotherapy, and co-evaluation with ABCB1 can identify high-risk groups of OS patients who are refractory to standard regimens.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/patología , Quimioterapia Adyuvante , Cisplatino/administración & dosificación , Supervivencia sin Enfermedad , Doxorrubicina/administración & dosificación , Femenino , Humanos , Ifosfamida/administración & dosificación , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Metotrexato/administración & dosificación , Terapia Neoadyuvante , Osteosarcoma/patología , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA