Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 108(21): 8743-8, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21555560

RESUMEN

The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. Here we show that γδ intraepithelial lymphocytes (γδ IEL) of the small intestine produce innate antimicrobial factors in response to resident bacterial "pathobionts" that penetrate the intestinal epithelium. γδ IEL activation was dependent on epithelial cell-intrinsic MyD88, suggesting that epithelial cells supply microbe-dependent cues to γδ IEL. Finally, γδ T cells protect against invasion of intestinal tissues by resident bacteria specifically during the first few hours after bacterial encounter, indicating that γδ IEL occupy a unique temporal niche among intestinal immune defenses. Thus, γδ IEL detect the presence of invading bacteria through cross-talk with neighboring epithelial cells and are an essential component of the hierarchy of immune defenses that maintain homeostasis with the intestinal microbiota.


Asunto(s)
Homeostasis/inmunología , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Animales , Bacterias/inmunología , Comunicación Celular/inmunología , Células Epiteliales , Inmunidad Innata , Metagenoma/inmunología , Ratones , Ratones Noqueados
2.
J Immunol ; 184(12): 6782-9, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20483765

RESUMEN

Intestinal bacteria drive the formation of lymphoid tissues, and in rabbit, bacteria also promote development of the preimmune Ab repertoire and positive selection of B cells in GALT. Previous studies indicated that Bacillus subtilis promotes B cell follicle formation in GALT, and we investigated the mechanism by which B. subtilis stimulates B cells. We found that spores of B. subtilis and other Bacillus species, including Bacillus anthracis, bound rabbit IgM through an unconventional, superantigen-like binding site, and in vivo, surface molecules of B. anthracis spores promoted GALT development. Our study provides direct evidence that B cell development in GALT may be driven by superantigen-like molecules, and furthermore, that bacterial spores modulate host immunity.


Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos B/citología , Diferenciación Celular/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tejido Linfoide/citología , Animales , Anticuerpos Antibacterianos/inmunología , Especificidad de Anticuerpos , Linfocitos B/inmunología , Western Blotting , Separación Celular , Citometría de Flujo , Tracto Gastrointestinal/citología , Tejido Linfoide/inmunología , Conejos , Esporas Bacterianas/inmunología , Superantígenos/inmunología
3.
J Bacteriol ; 191(24): 7587-96, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19837802

RESUMEN

The Bacillus anthracis spore is the causative agent of the disease anthrax. The outermost structure of the B. anthracis spore, the exosporium, is a shell composed of approximately 20 proteins. The function of the exosporium remains poorly understood and is an area of active investigation. In this study, we analyzed the previously identified but uncharacterized exosporium protein ExsK. We found that, in contrast to other exosporium proteins, ExsK is present in at least two distinct locations, i.e., the spore surface as well as a more interior location underneath the exosporium. In spores that lack the exosporium basal layer protein ExsFA/BxpB, ExsK fails to encircle the spore and instead is present at only one spore pole, indicating that ExsK assembly to the spore is partially dependent on ExsFA/BxpB. In spores lacking the exosporium surface protein BclA, ExsK fails to mature into high-molecular-mass species observed in wild-type spores. These data suggest that the assembly and maturation of ExsK within the exosporium are dependent on ExsFA/BxpB and BclA. We also found that ExsK is not required for virulence in murine and guinea pig models but that it does inhibit germination. Based on these data, we propose a revised model of exosporium maturation and assembly and suggest a novel role for the exosporium in germination.


Asunto(s)
Bacillus anthracis/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Esporas/crecimiento & desarrollo , Animales , Carbunco/microbiología , Bacillus anthracis/química , Proteínas Bacterianas/genética , Femenino , Cobayas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Esporas/química , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
4.
Science ; 334(6053): 255-8, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21998396

RESUMEN

The mammalian intestine is home to ~100 trillion bacteria that perform important metabolic functions for their hosts. The proximity of vast numbers of bacteria to host intestinal tissues raises the question of how symbiotic host-bacterial relationships are maintained without eliciting potentially harmful immune responses. Here, we show that RegIIIγ, a secreted antibacterial lectin, is essential for maintaining a ~50-micrometer zone that physically separates the microbiota from the small intestinal epithelial surface. Loss of host-bacterial segregation in RegIIIγ(-/-) mice was coupled to increased bacterial colonization of the intestinal epithelial surface and enhanced activation of intestinal adaptive immune responses by the microbiota. Together, our findings reveal that RegIIIγ is a fundamental immune mechanism that promotes host-bacterial mutualism by regulating the spatial relationships between microbiota and host.


Asunto(s)
Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Mucosa Intestinal/microbiología , Intestino Delgado/microbiología , Metagenoma , Proteínas/metabolismo , Inmunidad Adaptativa , Animales , Antibacterianos/farmacología , Carga Bacteriana , Bacterias Gramnegativas/inmunología , Bacterias Grampositivas/inmunología , Homeostasis , Inmunoglobulina A/análisis , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Lectinas Tipo C/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Asociadas a Pancreatitis , Simbiosis , Linfocitos T Colaboradores-Inductores/inmunología
5.
J Virol ; 78(24): 13600-12, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15564471

RESUMEN

Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.


Asunto(s)
Papaína/metabolismo , Poliproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteasas Similares a la Papaína de Coronavirus , Humanos , Datos de Secuencia Molecular , Mutación , Papaína/química , Papaína/genética , Procesamiento Proteico-Postraduccional , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA