Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(34): 21032-21041, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26160173

RESUMEN

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Secuencia de Bases , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas/química , Protones , Eliminación de Secuencia , Adenosina Trifosfato/química , Biocatálisis , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hidrólisis , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Fuerza Protón-Motriz , Termodinámica , Proteína Inhibidora ATPasa
2.
J Biol Chem ; 288(13): 9383-95, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23400782

RESUMEN

F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·Îµ binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Escherichia coli/metabolismo , ATPasas de Translocación de Protón/química , Antibacterianos/farmacología , Transporte Biológico , Reactivos de Enlaces Cruzados/farmacología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Hidrólisis , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/metabolismo , Factores de Tiempo
3.
Nat Commun ; 13(1): 3439, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715406

RESUMEN

The sperm calcium channel CatSper plays a central role in successful fertilization as a primary Ca2+ gateway. Here, we applied cryo-electron tomography to visualize the higher-order organization of the native CatSper complex in intact mammalian sperm. The repeating CatSper units form long zigzag-rows along mouse and human sperm flagella. Above each tetrameric channel pore, most of the extracellular domains form a canopy that interconnects to a zigzag-shaped roof. Murine CatSper contains an additional wing-structure connected to the tetrameric channel. The intracellular domains link two neighboring channels to a diagonal array, suggesting a dimer formation. Fitting of an atomic model of isolated monomeric CatSper to the in situ map reveals supramolecular interactions and assembly of the CatSper complex. Loss of EFCAB9-CATSPERζ alters the architecture and interactions of the channels, resulting in fragmentation and misalignment of the zigzag-rows and disruption of flagellar movement in Efcab9-/- sperm. This work offers unique insights into the structural basis for understanding CatSper regulation of sperm motility.


Asunto(s)
Motilidad Espermática , Cola del Espermatozoide , Animales , Calcio/metabolismo , Canales de Calcio/fisiología , Membrana Celular/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo
4.
J Vis Exp ; (84): e51383, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24638157

RESUMEN

We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε's conformations is predominant. The assay measures kinetics of ε's binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε's conformational changes.


Asunto(s)
Interferometría/métodos , Proteínas/química , Proteínas/metabolismo , Biotina/química , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Interferometría/instrumentación , Cinética , Ligandos , Estreptavidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA