Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822973

RESUMEN

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Neoplasias , Transducción de Señal , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Animales , Transición Epitelial-Mesenquimal/genética , Progresión de la Enfermedad , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Apoptosis/genética
2.
Biochem Pharmacol ; 210: 115461, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828272

RESUMEN

Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.


Asunto(s)
Proteínas de la Mielina , Enfermedades Neurodegenerativas , Humanos , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas Nogo , Regeneración Nerviosa/fisiología , Factores de Crecimiento Nervioso , Receptores Nogo
3.
Med Oncol ; 40(2): 84, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36680649

RESUMEN

A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Macrófagos , Inmunoterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA