RESUMEN
The main aim of the current work was to explore the differential metabolites and differentially expressed genes of longissimus dorsi muscle (LDM) between castrated and uncastrated fattening male South Sichuan black goats (Capra hircus). Then, the key genes regulating important differential metabolites (DMs) in castrated male goats were observed by integrated metabolomics and transcriptomics analyses. In addition, we evaluated the effects of castration on blood constituents, dressing percentage, and water holding capacity of LDM in male black goats. The results showed that the concentrations of alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were significantly increased and testosterone was significantly decreased in castrated male goats compared with the uncastrated male goats, while dressing percentage of black goats and water holding capacity of longissimus dorsi muscle were not significant differences. Through metabolomics and transcriptomics analyses, 23 important KEGG pathways, 13 important DMs, 32 important differentially expressed genes (DEGs), and 13 key genes related to the "Metabolism" and "Organismal systems" pathways were screened. Lipid accumulation may be elevated in the blood of fattening South Sichuan black goats after castration. Castration might play a positive role in energy provision, intercellular signaling, muscle function, softening of meat, disease reduction, and anti-oxidation of LDM. P4HA2, AKR1B1, GPT2, L2HGDH, ENSCHIG00000021660, ENSCHIG00000023861, DGAT2, ULK1, SLC38A3, PLA2G4A, SLC6A1, ENSCHIG00000026624, and ND2 might be the key genes regulating important DMs in the KEGG pathways related to "Metabolism" and "Organismal systems" of castrated male goats compared with the uncastrated male goats.