Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443425

RESUMEN

This paper shows that using the Padé-Laplace (PL) method for deconvolution of multi-exponential functions (stress relaxation of polymers) can produce ill-conditioned systems of equations. Analysis of different sets of generated data points from known multi-exponential functions indicates that by increasing the level of Padé approximants, the condition number of a matrix whose entries are coefficients of a Taylor series in the Laplace space grows rapidly. When higher levels of Padé approximants need to be computed to achieve stable modes for separation of exponentials, the problem of generating matrices with large condition numbers becomes more pronounced. The analysis in this paper discusses the origin of ill-posedness of the PL method and it was shown that ill-posedness may be regularized by reconstructing the system of equations and using singular value decomposition (SVD) for computation of the Padé table. Moreover, it is shown that after regularization, the PL method can deconvolute the exponential decays even when the input parameter of the method is out of its optimal range.

2.
Soft Matter ; 15(47): 9733-9741, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31742299

RESUMEN

Anisotropic hydrogels are produced, by magnetic alignment of magnetically sensitized nanoclays followed by polymerization of the hydrogel to freeze the developed oriented structure. The anisotropy in these hydrogels is quantitatively investigated using birefringence and 2D small angle X-ray scattering (SAXS) techniques. The oriented nanoclays being intrinsically birefringent provide optical anisotropy to the hydrogel and this orientation increases with the increase of the applied magnetic field strength. Moreover, 2D SAXS patterns also confirm that the nanoclays are oriented parallel to the permanent magnetic field in the hydrogel with an orientation order parameter of up to 0.67. The field-induced birefringence and 2D SAXS orientation results exhibit a linear correlation over the range of 0 to 9 tesla (T). The resultant anisotropic hydrogels exhibit substantial swelling anisotropy, making them suitable for wound dressings where the out of plane swelling is substantially higher than in-plane swelling to minimize in-plane stress damage to the wounds during healing.


Asunto(s)
Arcilla/química , Hidrogeles/química , Nanopartículas/química , Anisotropía , Vendajes , Campos Magnéticos , Polimerizacion
3.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850267

RESUMEN

The use of composite materials has seen many new innovations for a large variety of applications. The area of reinforcement in composites is also rapidly evolving with many new discoveries, including the use of hybrid fibers, sustainable materials, and nanocellulose. In this review, studies on hybrid fiber reinforcement, the use of nanocellulose, the use of nanocellulose in hybrid forms, the use of nanocellulose with other nanomaterials, the applications of these materials, and finally, the challenges and opportunities (including safety issues) of their use are thoroughly discussed. This review will point out new prospects for the composite materials world, enabling the use of nano- and micron-sized materials together and creating value-added products at the industrial scale. Furthermore, the use of hybrid structures consisting of two different nano-materials creates many novel solutions for applications in electronics and sensors.

4.
Adv Healthc Mater ; 8(10): e1801390, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30938941

RESUMEN

Exploiting contact lenses for ocular drug delivery is an emerging field in the area of biomedical engineering and advanced healthcare materials. Despite all the research conducted in this area, still, new technologies are in their early stages of the development, and more work must be done in terms of clinical trials to commercialize these technologies. A great challenge in using contact lenses for drug delivery is to achieve a prolonged drug release profile within the therapeutic range for various eye-related problems and diseases. In general, desired release kinetics to avoid the initial burst release is the zero-order kinetics within the therapeutic range. This review highlights the new technologies developed to achieve efficient and extended drug delivery. It also provides an overview of the materials and methods for fabrication of contact lenses and their mechanical and optical properties.


Asunto(s)
Lentes de Contacto/tendencias , Portadores de Fármacos/química , Administración Oftálmica , Humanos , Hidrogeles/química , Impresión Molecular , Nanopartículas/química , Siliconas/química , Vitamina E/química , Vitamina E/metabolismo
5.
Adv Healthc Mater ; 7(16): e1800231, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29947042

RESUMEN

Degradable electronics represent a rapidly emerging field of science and technology with the potential to serve short-term medical implantation applications where the device disappears once its function is complete. Despite many efforts in developing new types of degradable electronics, many of such systems are nonelastic and incompatible with the dynamic motion of native soft/elastic biological tissues. Herein, a photo-crosslinkable hydrogel with integrated electronics that are highly stretchable and degradable in liquid environments is demonstrated. The fabrication process takes advantage of facile laser micromachining of conductive patterns directly onto the hydrogel under ambient conditions and permanent hydrogel-hydrogel bonding. The robustness and degradation rate of hydrogel and the laser-processed encapsulated stretchable circuits is systematically investigated in different solutions under various conditions. Biocompatibility tests with non-neoplastic cells (HMT 3522 S1) and cancer cells (T4-2 and MDA-MB-231) are performed in 2D and 3D cell culture systems to confirm instead of evaluate the safety of the hydrogel and its byproducts during degradation as well as the zinc metal used in this technology. As a proof of concept, a stretchable hydrogel-based device that can be used for remote/wireless delivery of thermal energy into the tissue in contact with the hydrogel is fabricated.


Asunto(s)
Electrónica/métodos , Hidrogeles/química , Rayos Láser , Línea Celular Tumoral , Humanos , Polímeros/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA