Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 182(3): 578-593.e19, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32679029

RESUMEN

Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.


Asunto(s)
Nervio Accesorio/fisiología , Folículo Piloso/citología , Cabello/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Norepinefrina/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/fisiología , Nervio Accesorio/citología , Animales , Ciclo Celular/genética , Frío , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Cabello/citología , Cabello/fisiología , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piloerección , RNA-Seq , Receptores Adrenérgicos beta 2/deficiencia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Nicho de Células Madre , Células Madre/citología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Sinapsis/fisiología
2.
Genome Res ; 32(2): 242-257, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35042723

RESUMEN

Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.


Asunto(s)
Adipocitos/citología , Linaje de la Célula , Perfilación de la Expresión Génica , RNA-Seq , Análisis de la Célula Individual , Sesgo , Perfilación de la Expresión Génica/métodos , Humanos , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
3.
PLoS Biol ; 18(2): e3000630, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32040503

RESUMEN

Opsin3 (Opn3) is a transmembrane heptahelical G protein-coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown. In this study, we found that Opn3-knockout (Opn3-KO) mice were prone to diet-induced obesity and insulin resistance. At the cellular level, Opn3-KO brown adipocytes cultured in darkness had decreased glucose uptake and lower nutrient-induced mitochondrial respiration than wild-type (WT) cells. Light exposure promoted mitochondrial activity and glucose uptake in WT adipocytes but not in Opn3-KO cells. Brown adipocytes carrying a defective mutation in Opn3's putative G protein-binding domain also exhibited a reduction in glucose uptake and mitochondrial respiration in darkness. Using RNA-sequencing, we identified several novel light-sensitive and Opn3-dependent molecular signatures in brown adipocytes. Importantly, direct exposure of brown adipose tissue (BAT) to light in living mice significantly enhanced thermogenic capacity of BAT, and this effect was diminished in Opn3-KO animals. These results uncover a previously unrecognized cell-autonomous, light-sensing mechanism in brown adipocytes via Opn3-GPCR signaling that can regulate fuel metabolism and mitochondrial respiration. Our work also provides a molecular basis for developing light-based treatments for obesity and its related metabolic disorders.


Asunto(s)
Adipocitos Marrones/metabolismo , Metabolismo Energético , Opsinas de Bastones/metabolismo , Tejido Adiposo Pardo/inervación , Animales , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina , Luz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mutación , Obesidad/genética , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastones/genética , Transducción de Señal , Termogénesis
4.
EMBO Rep ; 20(8): e48216, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31264358

RESUMEN

Insulin orchestrates metabolic homeostasis through a complex signaling network for which the precise mechanisms controlling its fine-tuning are not completely understood. Here, we report that Afadin, a scaffold protein, is phosphorylated on S1795 (S1718 in humans) in response to insulin in adipocytes, and this phosphorylation is impaired with obesity and insulin resistance. In turn, loss of Afadin enhances the response to insulin in adipose tissues via upregulation of the insulin receptor protein levels. This happens in a cell-autonomous and phosphorylation-dependent manner. Insulin-stimulated Afadin-S1795 phosphorylation modulates Afadin binding with interaction partners in adipocytes, among which HDAC6 preferentially interacts with phosphorylated Afadin and acts as a key intermediate to suppress insulin receptor protein levels. Adipose tissue-specific Afadin depletion protects against insulin resistance and improves glucose homeostasis in diet-induced obese mice, independently of adiposity. Altogether, we uncover a novel insulin-induced cellular feedback mechanism governed by the interaction of Afadin with HDAC6 to negatively control insulin action in adipocytes, which may offer new strategies to alleviate insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Antígenos CD/genética , Histona Desacetilasa 6/genética , Insulina/genética , Proteínas de Microfilamentos/genética , Obesidad/genética , Procesamiento Proteico-Postraduccional , Receptor de Insulina/genética , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/patología , Animales , Antígenos CD/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Histona Desacetilasa 6/metabolismo , Homeostasis/genética , Humanos , Insulina/metabolismo , Insulina/farmacología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fosforilación , Cultivo Primario de Células , Receptor de Insulina/metabolismo
5.
Methods Mol Biol ; 2662: 241-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37076686

RESUMEN

The development of single cell approaches has facilitated the investigation of cellular heterogeneity and cell type-specific gene expression in complex tissues. Adipose tissue depots contain lipid storing adipocytes as well as a diverse array of cell types that form the adipocyte niche and regulate adipose tissue function. Here, I describe two protocols for the isolation of single cells and nuclei from white and brown adipose tissue. Additionally, I provide a detailed workflow for isolation of cell type- or lineage-specific single nuclei using nuclear tagging and translating ribosome affinity purification (NuTRAP) mouse models.


Asunto(s)
Tejido Adiposo , Transcriptoma , Ratones , Animales , Adipocitos , Tejido Adiposo Pardo
6.
Commun Biol ; 6(1): 761, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479789

RESUMEN

Brown adipose tissue (BAT) is responsible for regulating body temperature through adaptive thermogenesis. The ability of thermogenic adipocytes to dissipate chemical energy as heat counteracts weight gain and has gained considerable attention as a strategy against obesity. BAT undergoes major remodeling in a cold environment. This remodeling results from changes in the number and function of brown adipocytes, expanding the network of blood vessels and sympathetic nerves, and changes in the composition and function of immune cells. Such synergistic adaptation requires extensive crosstalk between individual cells in the tissue to coordinate their responses. To understand the mechanisms of intercellular communication in BAT, we apply the CellChat algorithm to single-cell transcriptomic data of mouse BAT. We construct an integrative network of the ligand-receptor interactome in BAT and identify the major signaling inputs and outputs of each cell type. By comparing the ligand-receptor interactions in BAT of mice housed at different environmental temperatures, we show that cold exposure enhances the intercellular interactions among the major cell types in BAT, including adipocytes, adipocyte progenitors, lymphatic and vascular endothelial cells, myelinated and non-myelinated Schwann cells, and immune cells. These interactions are predicted to regulate the remodeling of the extracellular matrix, the inflammatory response, angiogenesis, and neurite growth. Together, our integrative analysis of intercellular communications in BAT and their dynamic regulation in response to housing temperatures provides a new understanding of the mechanisms underlying BAT thermogenesis. The resources presented in this study offer a valuable platform for future investigations of BAT development and thermogenesis.


Asunto(s)
Células Endoteliales , Obesidad , Animales , Ratones , Ligandos , Comunicación Celular , Adipocitos Marrones
7.
Mol Metab ; 74: 101746, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37286033

RESUMEN

Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Humanos , Animales , Ratones , Adipogénesis/genética , RNA-Seq , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular/genética , Proteínas Represoras/genética
8.
Cell Metab ; 34(4): 533-548.e12, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305295

RESUMEN

Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
9.
Nat Rev Endocrinol ; 17(12): 726-744, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625737

RESUMEN

The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Humanos , Termogénesis/fisiología
10.
Cell Metab ; 33(1): 4-6, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406404

RESUMEN

Adipose tissue is composed of a variety of cells distributed in different depots and playing various metabolic roles. In a recent issue of Nature, Sun et al. (2020) use snRNA-seq and functional studies to identify a population of adipocytes that can suppress the thermogenic activity of neighboring adipocytes by secretion of acetate.


Asunto(s)
ARN Nuclear Pequeño , Termogénesis , Adipocitos , Tejido Adiposo , Temperatura
11.
Nat Metab ; 3(4): 485-495, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846638

RESUMEN

Brown adipose tissue (BAT) and beige fat function in energy expenditure in part due to their role in thermoregulation, making these tissues attractive targets for treating obesity and metabolic disorders. While prolonged cold exposure promotes de novo recruitment of brown adipocytes, the exact sources of cold-induced thermogenic adipocytes are not completely understood. Here, we identify transient receptor potential cation channel subfamily V member 1 (Trpv1)+ vascular smooth muscle (VSM) cells as previously unidentified thermogenic adipocyte progenitors. Single-cell RNA sequencing analysis of interscapular brown adipose depots reveals, in addition to the previously known platelet-derived growth factor receptor (Pdgfr)α-expressing mesenchymal progenitors, a population of VSM-derived adipocyte progenitor cells (VSM-APC) expressing the temperature-sensitive cation channel Trpv1. We demonstrate that cold exposure induces the proliferation of Trpv1+ VSM-APCs and enahnces their differentiation to highly thermogenic adipocytes. Together, these findings illustrate the landscape of the thermogenic adipose niche at single-cell resolution and identify a new cellular origin for the development of brown and beige adipocytes.


Asunto(s)
Adipocitos/fisiología , Frío , Células Madre Hematopoyéticas/fisiología , Músculo Liso Vascular/fisiología , Canales Catiónicos TRPV/fisiología , Termogénesis/fisiología , Adipocitos Beige/fisiología , Adipocitos Marrones/fisiología , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Canales Catiónicos TRPV/genética
12.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100382

RESUMEN

ß3-Adrenergic receptors (ß3-ARs) are the predominant regulators of rodent brown adipose tissue (BAT) thermogenesis. However, in humans, the physiological relevance of BAT and ß3-AR remains controversial. Herein, using primary human adipocytes from supraclavicular neck fat and immortalized brown/beige adipocytes from deep neck fat from 2 subjects, we demonstrate that the ß3-AR plays a critical role in regulating lipolysis, glycolysis, and thermogenesis. Silencing of the ß3-AR compromised genes essential for thermogenesis, fatty acid metabolism, and mitochondrial mass. Functionally, reduction of ß3-AR lowered agonist-mediated increases in intracellular cAMP, lipolysis, and lipolysis-activated, uncoupling protein 1-mediated thermogenic capacity. Furthermore, mirabegron, a selective human ß3-AR agonist, stimulated BAT lipolysis and thermogenesis, and both processes were lost after silencing ß3-AR expression. This study highlights that ß3-ARs in human brown/beige adipocytes are required to maintain multiple components of the lipolytic and thermogenic cellular machinery and that ß3-AR agonists could be used to achieve metabolic benefit in humans.


Asunto(s)
Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Lipólisis/genética , Receptores Adrenérgicos beta 3/genética , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Clavícula , Metabolismo Energético/genética , Silenciador del Gen , Humanos , Cuello , Cultivo Primario de Células , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
13.
Sci Rep ; 11(1): 9794, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963248

RESUMEN

The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts ß3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Frío , Regulación de la Expresión Génica , Cinesinas/biosíntesis , Miosinas/biosíntesis , Termogénesis , Animales , Cinesinas/genética , Ratones , Ratones Noqueados , Miosinas/genética
14.
Nat Metab ; 3(4): 469-484, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846639

RESUMEN

Brown adipose tissue can expend large amounts of energy, and therefore increasing its size or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular origins of PVAT are poorly understood. Here, we determine the identity of perivascular adipocyte progenitors in mice and humans. In mice, thoracic PVAT develops from a fibroblastic lineage, consisting of progenitor cells (Pdgfra+, Ly6a+ and Pparg-) and preadipocytes (Pdgfra+, Ly6a+ and Pparg+), which share transcriptional similarity with analogous cell types in white adipose tissue. Interestingly, the aortic adventitia of adult animals contains a population of adipogenic smooth muscle cells (Myh11+, Pdgfra- and Pparg+) that contribute to perivascular adipocyte formation. Similarly, human PVAT contains presumptive fibroblastic and smooth muscle-like adipocyte progenitor cells, as revealed by single-nucleus RNA sequencing. Together, these studies define distinct populations of progenitor cells for thermogenic PVAT, providing a foundation for developing strategies to augment brown fat activity.


Asunto(s)
Adipocitos Marrones/fisiología , Tejido Adiposo Pardo/fisiología , Linaje de la Célula/fisiología , Termogénesis/fisiología , Adipocitos Blancos/fisiología , Adipogénesis/fisiología , Tejido Adiposo Pardo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Aorta/citología , Aorta/fisiología , Vasos Sanguíneos/fisiología , Linaje de la Célula/genética , Fibroblastos/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/fisiología , Células Madre/fisiología , Termogénesis/genética
15.
Nat Commun ; 11(1): 2619, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457326

RESUMEN

DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3'-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Exorribonucleasas/metabolismo , Macrosomía Fetal/microbiología , ARN Mensajero/metabolismo , Tumor de Wilms/microbiología , Animales , Señalización del Calcio/genética , Diferenciación Celular , Células Madre Embrionarias , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Macrosomía Fetal/enzimología , Macrosomía Fetal/genética , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Ratones , Biosíntesis de Proteínas , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Uridina Monofosfato/metabolismo , Tumor de Wilms/enzimología , Tumor de Wilms/genética
16.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848096

RESUMEN

Brown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression. Obese mice that received HUMBLE cell transplants showed a sustained improvement in glucose tolerance and insulin sensitivity, as well as increased energy expenditure. Mechanistically, increased arginine/nitric oxide (NO) metabolism in HUMBLE adipocytes promoted the production of NO that was carried by S-nitrosothiols and nitrite in red blood cells to activate endogenous brown fat and improved glucose homeostasis in recipient animals. Together, these data demonstrate the utility of using CRISPR-Cas9 technology to engineer human white adipocytes to display brown fat-like phenotypes and may open up cell-based therapeutic opportunities to combat obesity and diabetes.


Asunto(s)
Adipocitos Marrones , Síndrome Metabólico , Tejido Adiposo Pardo/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dieta Alta en Grasa , Metabolismo Energético , Humanos , Síndrome Metabólico/terapia , Ratones , Ratones Obesos , Obesidad/metabolismo , Obesidad/terapia , Termogénesis
17.
Nat Commun ; 11(1): 1421, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184391

RESUMEN

Uncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription. Physiologically, FGF6/9 expression in adipose is upregulated by exercise and cold in mice, and FGF9/FGFR3 expression in human neck fat is significantly associated with UCP1 expression. Loss of FGF9 impairs BAT thermogenesis. In vivo administration of FGF9 increases UCP1 expression and thermogenic capacity. Thus, FGF6 and FGF9 are adipokines that can regulate UCP1 through a transcriptional network that is dissociated from brown adipogenesis, and act to modulate systemic energy metabolism.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Factor 6 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Factor 6 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/fisiopatología , Termogénesis , Proteína Desacopladora 1/genética
18.
Cell Metab ; 30(4): 768-783.e7, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353262

RESUMEN

Distinct oxygenases and their oxylipin products have been shown to participate in thermogenesis by mediating physiological adaptations required to sustain body temperature. Since the role of the lipoxygenase (LOX) family in cold adaptation remains elusive, we aimed to investigate whether, and how, LOX activity is required for cold adaptation and to identify LOX-derived lipid mediators that could serve as putative cold mimetics with therapeutic potential to combat diabetes. By utilizing mass-spectrometry-based lipidomics in mice and humans, we demonstrated that cold and ß3-adrenergic stimulation could promote the biosynthesis and release of 12-LOX metabolites from brown adipose tissue (BAT). Moreover, 12-LOX ablation in mouse brown adipocytes impaired glucose uptake and metabolism, resulting in blunted adaptation to the cold in vivo. The cold-induced 12-LOX product 12-HEPE was found to be a batokine that improves glucose metabolism by promoting glucose uptake into adipocytes and skeletal muscle through activation of an insulin-like intracellular signaling pathway.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Araquidonato 12-Lipooxigenasa/fisiología , Respuesta al Choque por Frío/fisiología , Metabolismo Energético/fisiología , Obesidad/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Marrones/patología , Animales , Línea Celular , Femenino , Glucosa/metabolismo , Humanos , Masculino , Ratones , Termogénesis/fisiología
19.
Mol Metab ; 18: 153-163, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30316806

RESUMEN

OBJECTIVES: Insulin receptor (IR)-mediated signaling is involved in the regulation of pluripotent stem cells; however, its direct effects on regulating the maintenance of pluripotency and lineage development are not fully understood. The main objective of this study is to understand the role of IR signaling in pluripotency and lineage development. METHODS: To explore the role of IR signaling, we generated IR knock-out (IRKO) mouse induced pluripotent stem cells (miPSCs) from E14.5 mouse embryonic fibroblasts (MEFs) of global IRKO mice using a cocktail of four reprogramming factors: Oct4, Sox2, Klf4, cMyc. We performed pluripotency characterization and directed the differentiation of control and IRKO iPSCs into neural progenitors (ectoderm), adipocyte progenitors (mesoderm), and pancreatic beta-like cells (endoderm). We mechanistically confirmed these findings via phosphoproteomics analyses of control and IRKO iPSCs. RESULTS: Interestingly, expression of pluripotency markers including Klf4, Lin28a, Tbx3, and cMyc were upregulated, while abundance of Oct4 and Nanog were enhanced by 4-fold and 3-fold, respectively, in IRKO iPSCs. Analyses of signaling pathways demonstrated downregulation of phospho-STAT3, p-mTor and p-Erk and an increase in the total mTor and Erk proteins in IRKO iPSCs in the basal unstimulated state. Stimulation with leukemia inhibitory factor (LIF) showed a ∼33% decrease of phospho-ERK in IRKO iPSCs. On the contrary, Erk phosphorylation was increased during in vitro spontaneous differentiation of iPSCs lacking IRs. Lineage-specific directed differentiation of the iPSCs revealed that cells lacking IR showed enhanced expression of neuronal lineage markers (Pax6, Tubb3, Ascl1 and Oligo2) while exhibiting a decrease in adipocyte (Fas, Acc, Pparγ, Fabp4, C/ebpα, and Fsp27) and pancreatic beta cell markers (Ngn3, Isl1, and Sox9). Further molecular characterization by phosphoproteomics confirmed the novel IR-mediated regulation of the global pluripotency network including several key proteins involved in diverse aspects of growth and embryonic development. CONCLUSION: We report, for the first time to our knowledge, the phosphoproteome of insulin, IGF1, and LIF stimulation in mouse iPSCs to reveal the importance of insulin receptor signaling for the maintenance of pluripotency and lineage determination.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Adipocitos/citología , Adipocitos/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Factor 4 Similar a Kruppel , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Receptor de Insulina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Cell Rep ; 24(3): 781-790, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021173

RESUMEN

Thermogenic fat expends energy during cold for temperature homeostasis, and its activity regulates nutrient metabolism and insulin sensitivity. We measured cold-activated lipid landscapes in circulation and in adipose tissue by MS/MSALL shotgun lipidomics. We created an interactive online viewer to visualize the changes of specific lipid species in response to cold. In adipose tissue, among the approximately 1,600 lipid species profiled, we identified the biosynthetic pathway of the mitochondrial phospholipid cardiolipin as coordinately activated in brown and beige fat by cold in wild-type and transgenic mice with enhanced browning of white fat. Together, these data provide a comprehensive lipid bio-signature of thermogenic fat activation in circulation and tissue and suggest pathways regulated by cold exposure.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Cardiolipinas/metabolismo , Frío , Lípidos/sangre , Termogénesis , Animales , Biomarcadores/sangre , Humanos , Metabolómica , Ratones , Modelos Animales , Fosfatidilgliceroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA