Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411947

RESUMEN

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Asunto(s)
Infecciones por Coronavirus , Interferones , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Autofagia , Línea Celular , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Interferones/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/metabolismo , Replicación Viral
2.
J Biol Chem ; 299(8): 104987, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392846

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), is crucial for controlling RNA metabolism and biological processes. The present work focused on exploring the effect of PTBP1 on PEDV replication. PTBP1 was upregulated during PEDV infection. The PEDV nucleocapsid (N) protein was degraded through the autophagic and proteasomal degradation pathways. Moreover, PTBP1 recruits MARCH8 (an E3 ubiquitin ligase) and NDP52 (a cargo receptor) for N protein catalysis and degradation through selective autophagy. Furthermore, PTBP1 induces the host innate antiviral response via upregulating the expression of MyD88, which then regulates TNF receptor-associated factor 3/ TNF receptor-associated factor 6 expression and induces the phosphorylation of TBK1 and IFN regulatory factor 3. These processes activate the type Ⅰ IFN signaling pathway to antagonize PEDV replication. Collectively, this work illustrates a new mechanism related to PTBP1-induced viral restriction, where PTBP1 degrades the viral N protein and induces type Ⅰ IFN production to suppress PEDV replication.


Asunto(s)
Infecciones por Coronavirus , Interferón Tipo I , Proteína de Unión al Tracto de Polipirimidina , Virus de la Diarrea Epidémica Porcina , Proteolisis , Enfermedades de los Porcinos , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/veterinaria , Interferón Tipo I/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/virología , Células Vero , Proteína de Unión al Tracto de Polipirimidina/metabolismo
3.
Curr Issues Mol Biol ; 46(2): 1047-1063, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392184

RESUMEN

Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines.

4.
J Virol ; 97(1): e0161422, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36541804

RESUMEN

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Asunto(s)
Proteínas de la Cápside , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Proteínas de la Cápside/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas , Replicación Viral/genética , Proteínas Nucleares/metabolismo , Autofagia
5.
J Virol ; 97(11): e0147023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882521

RESUMEN

IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.


Asunto(s)
Infecciones por Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Deltacoronavirus , Interferón Tipo I , Proteínas Mitocondriales , Fosfoproteínas Fosfatasas , Proteolisis , Enfermedades de los Porcinos , Porcinos , Replicación Viral , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Interferón Tipo I/inmunología , Transducción de Señal , Porcinos/virología , Enfermedades de los Porcinos/virología , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral/inmunología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Deltacoronavirus/inmunología , Deltacoronavirus/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo , Regulación hacia Abajo , Evasión Inmune , Proteínas de Unión al ARN/metabolismo
6.
Mikrochim Acta ; 191(7): 422, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922459

RESUMEN

Since 2017, an infectious goose gout disease characterized by urate precipitation in viscera, mainly caused by novel goose astrovirus (GoAstV) infection, has emerged in the main goose-producing region of China. The current challenge in managing goose gout disease is largely due to the absence of a rapid and efficient detection method for the GoAstV pathogen. Notably, the potential application of immunosensors in detecting GoAstV has not yet been explored. Herein, a label-free PEC immunosensor was fabricated by using purchased TiO2 as the photoactive material and antibody against GoAstV P2 proteins as the specific recognition element. First, we successfully expressed the capsid spike domain P2 protein of ORF2 from GoAstV CHSH01 by using the pET prokaryotic expression system. Meanwhile, the polyclonal antibody against GoAstV capsid P2 protein was produced by purified protein. To our knowledge, this is the first establishment and preliminary application of the label-free photoelectrochemical immunosensor method in the detection of AstV. The PEC immunosensor had a linear range of 1.83 fg mL-1 to 3.02 ng mL-1, and the limit of detection (LOD) was as low as 0.61 fg mL-1. This immunosensor exhibited high sensitivity, great specificity, and good stability in detecting GoAstV P2 proteins. To evaluate the practical application of the immunosensor in real-world sample detection, allantoic fluid from goose embryos was collected as test samples. The results indicated that of the eight positive samples, one false negative result was detected, while both negative samples were accurately detected, suggesting that the constructed PEC immunosensor had good applicability and practical application value, providing a platform for the qualitative detection of GoAstV.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , Titanio , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Animales , Inmunoensayo/métodos , Titanio/química , Gansos , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/química , Avastrovirus/química , Avastrovirus/inmunología , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Anticuerpos Antivirales/inmunología , Procesos Fotoquímicos
7.
J Biol Chem ; 298(8): 102190, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753351

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and dehydration in pigs and leads to great economic losses in the commercial swine industry. However, the underlying molecular mechanisms of host response to viral infection remain unclear. In the present study, we investigated a novel mechanism by which RALY, a member of the heterogeneous nuclear ribonucleoprotein family, significantly promotes the degradation of the PEDV nucleocapsid (N) protein to inhibit viral replication. Furthermore, we identified an interaction between RALY and the E3 ubiquitin ligase MARCH8 (membrane-associated RING-CH 8), as well as the cargo receptor NDP52 (nuclear dot protein 52 kDa), suggesting that RALY could suppress PEDV replication by degrading the viral N protein through a RALY-MARCH8-NDP52-autophagosome pathway. Collectively, these results suggest a preventive role of RALY against PEDV infection via the autophagy pathway and open up the possibility of inducing RALY in vivo as an effective prophylactic and preventive treatment for PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Autofagia , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Proteínas de la Nucleocápside , Virus de la Diarrea Epidémica Porcina/fisiología , Ribonucleoproteínas , Porcinos , Células Vero , Replicación Viral
8.
BMC Genomics ; 24(1): 568, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749507

RESUMEN

BACKGROUND: Mammals are potential hosts for many infectious diseases. However, studies on the viral communities of herbivorous mammals in the Northwest Plateau are limited. Here, we studied the viral communities of herbivorous mammals in the Northwest Plateau using virus metagenomic analysis to analyze and compare the viral community composition of seven animal species. RESULTS: By library construction and next-generation sequencing, contigs and singlets reads with similar viral sequences were classified into 24 viral families. Analyzed from the perspective of sampling areas, the virus community composition was relatively similar in two areas of Wuwei and Jinchang, Gansu Province. Analyzed from the perspective of seven animal species, the viral reads of seven animal species were mostly ssDNA and dominated by CRESS-DNA viruses. Phylogenetic analysis based on viral marker genes indicated that CRESS-DNA viruses and microviruses have high genetic diversity. In addition to DNA viruses, nodaviruses, pepper mild mottle viruses and picornaviruses were RNA viruses that we performed by phylogenetic analysis. The CRESS-DNA viruses and nodaviruses are believed to infect plants and insects, and microviruses can infect bacteria, identifying that they were likely from the diet of herbivorous mammals. Notably, two picornaviruses were identified from red deer and wild horse, showing that the picornavirus found in red deer had the relatively high similarity with human hepatitis A virus, and the picornavirus carried by wild horse could potentially form a new species within the Picornaviridae family. CONCLUSIONS: This study explored the herbivorous mammalian virus community in the Northwest Plateau and the genetic characteristics of viruses that potentially threaten human health. It reveals the diversity and stability of herbivorous mammalian virus communities in the Northwest Plateau and helps to expand our knowledge of various herbivorous mammalian potentially pathogenic viruses.


Asunto(s)
Brassicaceae , Ciervos , Animales , Humanos , Filogenia , Verduras , Clonación Molecular
9.
J Virol ; 96(13): e0061822, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35695513

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Asunto(s)
Infecciones por Coronavirus , Interferón Tipo I , Proteínas de la Nucleocápside , Virus de la Diarrea Epidémica Porcina , Factores de Transcripción , Animales , Antivirales , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Factor 3 Asociado a Receptor de TNF , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Células Vero
10.
J Virol ; 96(10): e0007022, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35499322

RESUMEN

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Proteínas de Unión al ADN , Interferón Tipo I , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Animales , Infecciones por Coronavirus/veterinaria , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/fisiología , ARN/metabolismo , Transducción de Señal , Porcinos , Factor 3 Asociado a Receptor de TNF/metabolismo
11.
J Virol ; 96(22): e0155522, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36317879

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Interferón Tipo I , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Animales , Antivirales , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Interferones , Factor 88 de Diferenciación Mieloide , Proteínas de la Nucleocápside/fisiología , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/virología , Ubiquitina-Proteína Ligasas , Células Vero , Interferón Tipo I/inmunología
12.
Brief Bioinform ; 22(2): 2182-2190, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32349124

RESUMEN

Circular RNAs (circRNAs) are covalently closed long noncoding RNAs critical in diverse cellular activities and multiple human diseases. Several cancer-related viral circRNAs have been identified in double-stranded DNA viruses (dsDNA), yet no systematic study about the viral circRNAs has been reported. Herein, we have performed a systematic survey of 11 924 circRNAs from 23 viral species by computational prediction of viral circRNAs from viral-infection-related RNA sequencing data. Besides the dsDNA viruses, our study has also revealed lots of circRNAs in single-stranded RNA viruses and retro-transcribing viruses, such as the Zika virus, the Influenza A virus, the Zaire ebolavirus, and the Human immunodeficiency virus 1. Most viral circRNAs had reverse complementary sequences or repeated sequences at the flanking sequences of the back-splice sites. Most viral circRNAs only expressed in a specific cell line or tissue in a specific species. Functional enrichment analysis indicated that the viral circRNAs from dsDNA viruses were involved in KEGG pathways associated with cancer. All viral circRNAs presented in the current study were stored and organized in VirusCircBase, which is freely available at http://www.computationalbiology.cn/ViruscircBase/home.html and is the first virus circRNA database. VirusCircBase forms the fundamental atlas for the further exploration and investigation of viral circRNAs in the context of public health.


Asunto(s)
Sistemas de Administración de Bases de Datos , ARN Circular/genética , ARN Viral/genética , Virus/genética , Humanos
13.
Virol J ; 20(1): 46, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894948

RESUMEN

BACKGROUND: Porcine circovirus type 2 (PCV2) has caused great economic losses in the global pig industry. There have been published records of wild rats acting as the reservoirs of PCV2 (only PCV2a and PCV2b), but almost all of which were related to the PCV2-infected swine herds. RESULTS: In this study, we carried out the detection, amplification, and characterization of novel PCV2 strains in wild rats that were captured far from pig farms. Nested PCR assay demonstrated that the kidney, heart, lung, liver, pancreas, and large and small intestines of rats were screened positive for PCV2. We subsequently sequenced two full genomes of PCV2 in positive sample pools, designated as js2021-Rt001 and js2021-Rt002. Genome sequence analysis indicated that they had the highest similarity to nucleotide sequences of porcine-origin PCV2 isolates in Vietnam. Phylogenetically, js2021-Rt001 and js2021-Rt002 were a part of the PCV2d genotype cluster, which is a predominant genotype circulating worldwide in recent years. The antibody recognition regions, immunodominant decoy epitope, and heparin sulfate binding motif of the two complete genome sequences coincided with those previously reported. CONCLUSIONS: Our research reported the genomic characterization of two novel PCV2 strains (js2021-Rt001 and js2021-Rt002) and provided the first supported evidence that PCV2d could naturally infect wild rats in China. However, whether the newly identified strains have potential for circulating in nature in vertical and horizontal transmission or inter-species jumping between rats and pigs needs further research.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Animales , Porcinos , Ratas , Infecciones por Circoviridae/veterinaria , Filogenia , Granjas , Viroma , Enfermedades de los Porcinos/epidemiología , Genotipo , China/epidemiología
14.
15.
J Virol ; 95(19): e0064521, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287043

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has reemerged lately, resulting in large economic losses. During viral infection, type I interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production. To suppress virus replication, the host must activate IFN-stimulated genes and some host restriction factors to circumvent viral replication. This study observed that PEDV infection induced early growth response gene 1 (EGR1) expression in PEDV-permissive cells. EGR1 overexpression remarkably suppressed PEDV replication. In contrast, depletion of EGR1 led to a significant increase in viral replication. EGR1 suppressed PEDV replication by directly binding to the IFN-regulated antiviral (IRAV) promoter and upregulating IRAV expression. A detailed analysis revealed that IRAV interacts and colocalizes with the PEDV nucleocapsid (N) protein, inducing N protein degradation via the E3 ubiquitin ligase MARCH8 to catalyze N protein ubiquitination. Knockdown of endogenous MARCH8 significantly reversed IRAV-mediated N protein degradation. The collective findings demonstrate a new mechanism of EGR1-mediated viral restriction, in which EGR1 upregulates the expression of IRAV to degrade PEDV N protein through MARCH8. IMPORTANCE PEDV is a highly contagious enteric coronavirus that has rapidly emerged worldwide and has caused severe economic losses. No currently available drugs or vaccines can effectively control PEDV. PEDV has evolved many strategies to limit IFN-I production. We identified EGR1 as a novel host restriction factor and demonstrated that EGR1 suppresses PEDV replication by directly binding to the IRAV promoter and upregulating the expression of IRAV, which interacts with and degrades the PEDV N protein via the E3 ubiquitin ligase MARCH8 to catalyze nucleocapsid protein ubiquitination, which adds another layer of complexity to the innate antiviral immunity of this newly identified restriction factor. A better understanding of the innate immune response to PEDV infection will aid the development of novel therapeutic targets and more effective vaccines against virus infection.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Proteínas de la Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Antivirales/metabolismo , Chlorocebus aethiops , Infecciones por Coronavirus , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/virología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células Vero
16.
J Med Virol ; 94(6): 2537-2547, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35075668

RESUMEN

Redondoviridae is a recently identified family of DNA viruses associated with periodontitis. Circular RNAs (circRNAs) are novel endogenous, conserved noncoding RNAs contributing to the virus-related immune-inflammatory response. This study aimed to analyze the expression profiles of circRNAs in the gingival tissues of periodontitis patients with and without Redondoviridae-infection and healthy controls using high-throughput RNA sequencing combined with experimental validation. Out of 17 819 circRNAs, 175 were dysregulated. Functional annotation and enrichment analysis of the differential circRNA host genes demonstrated potential alterations in the molecular and cellular components and metabolism in individuals suffering from periodontitis with Redondoviridae infection. Moreover, "axon guidance," "lysine biosynthesis," and "vascular endothelial growth factor signaling pathways" were significantly enriched in Redondoviridae-infected gingivitis tissues. Furthermore, the key circRNAs (circCOL1A1, circAASS, circPTK2, circATP2B4, circDOCK1, circTTBK2, and circMCTP2) associated with the pathobiology of Redondoviridae-related periodontitis were identified by constructing circRNA-micro RNA (miRNA)-messenger RNA (mRNA) networks. Bioinformatics analyses demonstrated that abnormally expressed circRNAs might contribute to the etiopathogenesis and development of Redondoviridae-related periodontitis. This study's findings have enhanced the current understanding of the Redondoviridae-related periodontitis mechanism and provide insights into further applications for diagnostic markers and therapeutic uses.


Asunto(s)
MicroARNs , Periodontitis , Humanos , MicroARNs/genética , Periodontitis/genética , ARN Circular/genética , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular
17.
J Med Virol ; 93(3): 1786-1791, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32940906

RESUMEN

Pangolin metagenomic data obtained from public databases were used to assemble partial or complete viral genomes showing genetic relationship to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Sendai virus, flavivirus, picornavirus, parvovirus, and genomovirus, respectively. Most of these virus genomes showed genomic recombination signals. Phylogeny based on the SARS-CoV-2-related virus sequences assembled in this study and those recently published indicated that pangolin SARS-CoV-2-related viruses were clustered into two sub-lineages according to geographic sampling sites. These findings suggest the need for further pangolin samples, from different countries, to be collected and analyzed for coronavirus to elucidate whether pangolins are intermittent hosts for SARS-CoV-2.


Asunto(s)
COVID-19/virología , Genoma Viral/genética , Metagenoma/genética , Pangolines/virología , SARS-CoV-2/genética , Animales , Especificidad del Huésped/genética , Metagenómica/métodos , Filogenia , Recombinación Genética/genética
18.
Arch Virol ; 166(7): 1903-1911, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33900472

RESUMEN

Tripartite motif protein 21 (TRIM21) is an E3 ubiquitin ligase and cytosolic antibody receptor of the TRIM family. Previous reports have indicated that TRIM21 plays an important role during viral infection. This study aimed at examining the role of TRIM21 in the replication of porcine epidemic diarrhea virus (PEDV) and showed that TRIM21 inhibits PEDV proliferation by targeting and degrading the nucleocapsid (N) protein through the proteasomal pathway. Furthermore, the endogenous expression of TRIM21 was found to be downregulated by PEDV infection in Vero and LLC-PK1 cells. Overexpression of TRIM21 inhibited PEDV replication, whereas knockdown of TRIM21 increased viral titers and N protein levels. TRIM21 was found to interact and colocalize with the N protein, and the TRIM21-mediated antiviral effect was dependent on its ubiquitin ligase activity, which engages in polyubiquitination and degradation of the N protein in a proteasome-dependent manner. Taken together, these findings provide information about the role of TRIM21 in PEDV proliferation and increase our understanding of host-virus interactions.


Asunto(s)
Proliferación Celular/fisiología , Infecciones por Coronavirus/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus de la Diarrea Epidémica Porcina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Regulación hacia Abajo/fisiología , Células HEK293 , Células HeLa , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteolisis , Porcinos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Células Vero , Replicación Viral/fisiología
19.
Virol J ; 17(1): 46, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245493

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied. METHODS: To accurately identify the important immunodominant region of S1, the purified truncated S1 proteins (SA, SB, SC, SD and SE) were used to immunize BALB/c mice to prepare polyclonal antibodies. The antisera titers were determined by indirect ELISA, western blot and IFA after four immunizations to find the important immunodominant region of S1, and then purified the immunodominant region of S1 protein and immunized mice to generate the special antibodies, and then used recombinant peptides to determine the B-cell epitopes of monoclonal antibodies. RESULTS: Five antisera of recombinant proteins of the spike protein region of PEDV were generated and we found that only the polyclonal antibody against part of the S1 region (signed as SE protein, residues 666-789) could recognize the native PEDV. Purified SE protein was used to immunize BALB/c mice and generate mAb 2E10. Pepscan of the SE protein demonstrated that SE16 (722SSTFNSTREL731) is the minimal linear epitope required for reactivity with the mAb 2E10. Further investigation indicated that the epitope SE16 was localized on the surface of PEDV S protein in the 3D structure. CONCLUSIONS: A mAb 2E10 that is specifically bound to PEDV was generated and identified a specific linear B-cell epitope (SE16, 722SSTFNSTREL731) of the mAb. The epitope region of PEDV S1 localized in the different regions in comparison with the earlier identified epitopes. These findings enhance the understanding of the PEDV spike protein structure for vaccine design and provide a potential use for developing diagnostic methods to detect PEDV.


Asunto(s)
Epítopos de Linfocito B/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Chlorocebus aethiops , Femenino , Ratones , Ratones Endogámicos BALB C , Virus de la Diarrea Epidémica Porcina/química , Células Vero
20.
Arch Virol ; 165(12): 2847-2856, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33034764

RESUMEN

Here, we investigated the fecal, oral, blood, and skin virome of 10 laboratory rabbits using a viral metagenomic method. In the oral samples, we detected a novel polyomavirus (RabPyV), and phylogenetic analysis based on the large T antigen, VP1 and VP2 regions indicated that the novel strain might have undergone a recombination event. Recombination analysis based on related genomes confirmed that RabPyV is a multiple recombinant between rodent-like and avian-like polyomaviruses. In fecal samples, three partial or complete genome sequences of viruses belonging to the families Picobirnaviridae, Parvoviridae, Microviridae and Coronaviridae were characterized, and phylogenetic trees were constructed based on the predicted amino acid sequences of viral proteins. This study increases the amount of genetic information on viruses present in laboratory rabbits.


Asunto(s)
Metagenoma , Poliomavirus/aislamiento & purificación , Conejos/virología , Proteínas Virales/genética , Virus/clasificación , Animales , Animales de Laboratorio/virología , Sangre/virología , Heces/virología , Genoma Viral , Boca/virología , Filogenia , Piel/virología , Virus/aislamiento & purificación , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA