Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 863, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073678

RESUMEN

BACKGROUND: Tetramethylpyrazine has been extensively studied as an anticancer substance and a flavor substance in the fields of medicine and food industry. A strain with high tetramethylpyrazine production was screened from the fermented grains of Danquan winery. Genome sequencing can reveal the potential roles of bacteria by thoroughly examining the connection between genes and phenotypes from a genomic perspective. METHODS AND RESULTS: In this study, whole genome of this strain was sequenced and analyzed. This paper summarized the genomic characteristics of strain TTMP2 and analyzed genes related to the synthesis of tetramethylpyrazine. Bacillus sp. TTMP2 has a complete metabolic pathway for acetoin and tetramethylpyrazine metabolism. Gene function was analyzed by COG annotation, GO annotation, KEGG annotation and functional annotations for lipoproteins, carbohydrate-active enzymes, and pathogen-host interactions. Phylogenetic analysis indicated that Bacillus velezensis had the high homology with Bacillus sp. TTMP2. Genomes of 16 Bacillus species cover all genes of Bacillus, suggesting that genus Bacillus has an open pan-genome and can survive in diverse environments. CONCLUSION: The analysis of genome sequencing data from Bacillus sp. TTMP2 showed that its metabolic characteristics could be deeply understood, indicating that this bacterium had a particular role in tetramethylpyrazine synthesis.


Asunto(s)
Bacillus , Genoma Bacteriano , Filogenia , Pirazinas , Secuenciación Completa del Genoma , Bacillus/genética , Bacillus/metabolismo , Pirazinas/metabolismo , Secuenciación Completa del Genoma/métodos , Genoma Bacteriano/genética , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular
2.
ACS Omega ; 9(27): 29566-29575, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005808

RESUMEN

The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.

3.
Gene ; 898: 148120, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38163626

RESUMEN

Dunaliella parva can extensively accumulate carotenoids, which is a promising raw material for carotenoids production. Carotenoids have important medicinal value. D. parva is an ideal organism for studying the mechanism of carotenoid synthesis. Our previous study identified a transcription factor DpAP2 which could regulate carotenoid synthesis in D. parva. In addition, DpAP2 could interact with three proteins with different activities (DNA binding transcription factor activity, protein kinase activity, and alpha-D-phosphohexomutase). To investigate the function of PK gene encoding interacting protein of DpAP2 with protein kinase activity in D. parva, PK gene was cloned into vector pBI221-GFP-UbiΩ-CAT and transformed into D. parva in this study. The results showed that overexpression of PK gene enhanced the contents of carotenoids, total sugars, proteins, and antioxidant activities of carotenoid extract such as superoxide radical scavenging activity, reducing power, hydroxyl radical scavenging activity in transgenic D. parva with overexpression of PK gene. This study explored the function of PK gene, and improved the medicinal value of D. parva.


Asunto(s)
Chlorophyceae , Microalgas , Carotenoides/metabolismo , Antioxidantes , Microalgas/genética , Factores de Transcripción , Proteínas Quinasas
4.
Bioresour Technol ; 410: 131291, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153698

RESUMEN

Overexpression of Dunaliella parva (D. parva) malic enzyme (ME) gene (DpME) significantly increased DpME expression and ME enzyme activity in transgenic D. parva. Nitrogen limitation had an inhibitory effect on protein content, and DpME overexpression could improve protein content. Nitrogen limitation increased carbohydrate content, and Dunaliella parva overexpressing malic enzyme gene under nitrogen limitation (DpME-N-) group showed the lowest starch content among all groups. Dunaliella parva overexpressing malic enzyme gene under nitrogen sufficient condition (DpME) and DpME-N- groups showed considerably high mRNA levels of DpME. ME activity was significantly enhanced by DpME overexpression, and nitrogen limitation caused a smaller increase. DpME overexpression and nitrogen limitation obviously enhanced lipid accumulation, and DpME overexpression had more obvious effect. Compared with control (wild type), lipid content (68.97%) obviously increased in DpME-N- group. This study indicated that the combination of DpME overexpression and nitrogen limitation was favorable to the production of microalgae biodiesel.

5.
PLoS One ; 18(12): e0295973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100462

RESUMEN

Carotenoids are antioxidants, which reduce various chronic diseases of human, and have many industrial applications. The halophilic Dunaliella parva (D. parva) is rich in carotenoids. The compounds CaCl2 and PEG are the popular metabolic enhancers. To further enhance carotenogenesis, D. parva was treated with two compounds polyethylene glycol (PEG) and CaCl2. Application of CaCl2 and PEG enhanced the carotenoids contents and the antioxidant activities of carotenoids compared to control group (no treatment of CaCl2 or PEG). The highest carotenoids contents were obtained by treating D. parva with 40 ppm CaCl2 (3.11 mg/g dry weight, DW) and 80 ppm PEG (2.78 mg/g DW) compared with control group (1.96 mg/g DW). When D. parva was treated with 40 ppm CaCl2 and 80 ppm PEG, protein contents reached the highest values (90.28 mg/g DW and 89.57 mg/g DW) compared to that of control group (73.42 mg/g DW). The antioxidant activities of carotenoids samples were determined. Generally, the antioxidant activities of carotenoids from D. parva treated with PEG and CaCl2 were superior to that of control group. The antioxidant activities of carotenoids mainly contained reducing power, hydroxyl radical scavenging activity and superoxide radical scavenging activity. The reducing powers of carotenoids extracts from 20 ppm CaCl2 group (2.07%/mg carotenoids) and 120 ppm PEG group (1.59%/mg carotenoids) were significantly higher than that of control group (<1.25%/mg carotenoids). The superoxide radical scavenging activities of carotenoids extracts from 40 ppm CaCl2 group (70.33%/mg carotenoids) and 80 ppm PEG group (65.94%/mg carotenoids) were significantly higher than that of control group (<55%/mg carotenoids). This paper laid a foundation for massive accumulation of carotenoids in microalga D. parva.


Asunto(s)
Chlorophyceae , Microalgas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Microalgas/metabolismo , Cloruro de Calcio , Polietilenglicoles , Superóxidos , Carotenoides/metabolismo , Chlorophyceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA