RESUMEN
The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.
Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Memoria Inmunológica , SARS-CoV-2 , Animales , Humanos , Ratones , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Memoria Inmunológica/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , MutaciónRESUMEN
Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.
Asunto(s)
Anticuerpos Antivirales , Deriva y Cambio Antigénico , COVID-19 , Evolución Molecular , Inmunidad Humoral , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infección Irruptiva/inmunología , Infección Irruptiva/virología , COVID-19/inmunología , COVID-19/virología , Sueroterapia para COVID-19 , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Deriva y Cambio Antigénico/inmunología , MutaciónRESUMEN
Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.
Asunto(s)
Carcinoma Ductal Pancreático/genética , Glutaminasa/genética , Neoplasias Pancreáticas/genética , Succinato-CoA Ligasas/genética , Animales , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/mortalidad , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glutaminasa/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , NADP/metabolismo , Estrés Oxidativo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/mortalidad , Fosforilación , Pronóstico , Procesamiento Proteico-Postraduccional , Transducción de Señal , Succinato-CoA Ligasas/metabolismo , Ácido Succínico/metabolismo , Análisis de Supervivencia , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Evasión Inmune/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/clasificación , Anticuerpos Antivirales/clasificación , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Células Cultivadas , Convalecencia , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Humanos , Sueros Inmunes/inmunología , Modelos Moleculares , Mutación , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
Asunto(s)
Anticuerpos Antivirales , Deriva y Cambio Antigénico , COVID-19 , Epítopos de Linfocito B , Tolerancia Inmunológica , Mutación , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Humanos , Inmunidad Humoral , Inmunización Secundaria , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Gluconeogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipogénesis , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Animales , Carcinogénesis , Carcinoma Hepatocelular/patología , Proliferación Celular , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/química , Ratones , Ratones Desnudos , Oxiesteroles/metabolismo , Fosforilación , Pronóstico , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismoRESUMEN
Soil salinity significantly limits rice productivity, but it is poorly understood how excess sodium (Na+) is delivered to the grains at the reproductive stage. Here, we functionally characterized OsHAK4, a member of the clade IV HAK/KUP/KT transporter subfamily in rice. OsHAK4 was localized to the plasma membrane and exhibited influx transport activity for Na+, but not for K+. Analysis of organ- and growth stage-dependent expression patterns showed that very low expression levels of OsHAK4 were detected at the vegetative growth stage, but its high expression in uppermost node I, peduncle, and rachis was found at the reproductive stage. Immunostaining indicated OsHAK4 localization in the phloem region of node I, peduncle, and rachis. Knockout of OsHAK4 did not affect the growth and Na+ accumulation at the vegetative stage. However, at the reproductive stage, the hak4 mutants accumulated higher Na+ in the peduncle, rachis, husk, and brown rice compared to the wild-type rice. Element imaging revealed higher Na+ accumulation at the phloem region of the peduncle in the mutants. These results indicate that OsHAK4 plays a crucial role in retrieving Na+ from the phloem in the upper nodes, peduncle, and rachis, thereby preventing Na+ distribution to the grains at the reproductive stage of rice.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Floema , Proteínas de Plantas , Sodio , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Floema/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sodio/metabolismo , Reproducción , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genéticaRESUMEN
SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin-1ß (IL-1ß) expression, but reduced IL-1ß secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.
Asunto(s)
COVID-19/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nucleocápside/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Caspasa 1/inmunología , Caspasa 1/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células THP-1RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , COVID-19/genética , Sueroterapia para COVID-19 , Anticuerpos NeutralizantesRESUMEN
Chromatin remodelers are commonly altered in human cancer. The mutation of AT-rich interactive domain 1A (ARID1A) in gastric cancer (GC), a component of the SWI/SNF chromatin remodeling complex, was proven associated with treatment response in our previous study. However, ARID1A loss of function was caused not only by mutations but also copy number deletions. The clinicopathologic, genomic, and immunophenotypic correlates of ARID1A loss is largely uncharacterized in GC. Here, 819 patients with clinicopathological information and sequencing data or formalin-fixed paraffin-embedded tissues from four cohorts, Zhongshan Hospital (ZSHS) cohort (n = 375), The Cancer Genome Atlas (TCGA) cohort (n = 371), Samsung Medical Center (SMC) cohort (n = 53), and ZSHS immunotherapy cohort (n = 20), were enrolled. ARID1A loss was defined by genome sequencing or deficient ARID1A expression by immunohistochemistry. We found that ARID1A mutation and copy number deletion were enriched in GC with microsatellite instability (MSI) and chromosomal-instability (CIN), respectively. In the TCGA and ZSHS cohorts, only CIN GC with ARID1A loss could benefit from fluorouracil-based adjuvant chemotherapy. In the SMC and ZSHS immunotherapy cohorts, ARID1A loss exhibited a tendency of superior responsiveness and indicated favorable overall survival after anti-PD-1 immunotherapy. ARID1A-loss tumors demonstrated elevated mutation burden, neoantigen load, and interferon gamma pathway activation. Moreover, in CIN GC, ARID1A loss was correlated with higher homologous recombination deficiency. ARID1A loss defines a distinct subtype of GC characterized by high levels of genome instability, neoantigen formation, and immune activation. These tumors show sensitivity to both chemotherapy and anti-PD-1 immunotherapy. This study provides valuable insights for precision treatment strategies in GC.
Asunto(s)
Proteínas de Unión al ADN , Neoplasias Gástricas , Humanos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , MutaciónRESUMEN
BACKGROUND: This study aimed to reveal the effect of TP53 status on clinical outcomes and underlying mechanism in gastric cancer (GC) patients. METHODS: TP53 status was divided into three groups according to genome sequencing, namely clonal mutations with LOH (C-LOH), clonal diploid or subclonal mutations (CD-SC), and wild type (WT). The p53 protein activity was divided into over-expression (OE), Null and WT according to immunohistochemical staining. Four cohorts, including the TCGA, SMC, ZSHS and FUSCC cohort, were analyzed for association between TP53 mutation status and clinical outcomes and the underlying mechanism. RESULTS: In TCGA cohort, TP53 CD-SC were associated with superior overall survival compared to TP53 C-LOH cases. GC patients could benefit from ACT only in TP53 CD-SC/ p53 OE and TP53/ p53 WT subgroups, and TP53 C-LOH subgroup demonstrated the worst response to pembrolizumab among three subgroups. Genomic and immunophenotypic deconvolution revealed that TP53 C-LOH, CD-SC and WT differed for genomic and immune-related features. CONCLUSIONS: TP53 C-LOH GCs with genomic instability and immune evasion phenotype have poor clinical outcomes in patients treated with ACT or immunotherapy.
Asunto(s)
Inmunoterapia , Pérdida de Heterocigocidad , Mutación , Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/inmunología , Proteína p53 Supresora de Tumor/genética , Quimioterapia Adyuvante , Femenino , Masculino , Inmunoterapia/métodos , Persona de Mediana Edad , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéuticoRESUMEN
Metallic zinc exhibits immense potential as an anode material for aqueous rechargeable zinc batteries due to its high theoretical capacity, low redox potential, and inherent safety. However, practical applications are hindered by dendrite formation and poor cycling stability. Herein, a facile substitution reaction method is presented to fabricate a 3D leaf-like Cu@Zn composite anode. This unique architecture, featuring a 3D network of leaf-like Cu on a Zn foil surface, significantly reduces nucleation overpotential and facilitates uniform Zn plating/stripping, effectively suppressing dendrite growth. Notably, an alloy layer of CuZn5 forms in situ on the 3D Cu layer during cycling. DFT calculations reveal that this CuZn5 alloy possesses a lower Zn binding energy compared to both Cu and Zn metal, further promoting Zn plating/stripping and enhancing electrochemical kinetics. Consequently, the symmetric Cu@Zn electrode exhibits remarkable cycling stability, surpassing 1300 h at 0.5 mA cm-2 with negligible dendrite formation. Furthermore, full cells comprising Cu@Zn||VO2 exhibit superior capacity and rate performance compared to bare Zn anodes. This work provides a promising strategy for constructing highly stable and efficient Zn anodes for next-generation aqueous zinc batteries.
RESUMEN
The application of supramolecular templates in aligning atomically precise heterometal arrays is important for pursuing functional materials. Herein, we report that a bilayered supramolecular tri-deprotonated melamine dimer functions as an effective template in the construction of a heterometallic gold(I)-silver(I) macrocyclic cluster [µ6 -(C3 N6 H3 )3- ]2 -AuI 6 AgI 6 . X-ray single crystal structural analysis showed that a crown-like AuI 6 AgI 6 macrocycle is aligned around two parallelly stacked µ6 -(C3 N6 H3 )3- moieties hold together with π-π interactions. Theoretical calculations revealed that the [µ6 -(C3 N6 H3 )3- ]2 motif dominantly contributes to the near-occupied orbitals in the electronic structure, which is closely related to its luminescence properties. This work demonstrates that the supramolecular templates containing multiple symmetric binding sites may present a facile approach in the construction of functional metal clusters.
RESUMEN
We have previously reported the first formal hydroamination of enamines for the synthesis of chiral 1,2-diamines. Here, we describe: (i) the discovery, optimization, and substrate expansion of this reaction; (ii) a novel and straightforward protocol for the "click-type" synthesis of enamines in quantitative yield utilizing sodium sulfate in a dual role as an ancillary and dehydrating agent without the need for workup or purification; (iii) the application of this methodology to the first enantioselective synthesis of orthogonally protected 1,1'-(1-(4-fluorophenyl)ethane-1,2-diyl) piperazines, a scaffold for rapid lead optimization in drug discovery; (iv) a computational investigation into the mechanism and rationalization of the enantioselectivities of the reaction.
RESUMEN
Reducing the contact time of an impacting droplet is highly desirable in various industrial fields including anti-icing. With the straightforward upscaling advantage, singularities on superhydrophobic surfaces can induce an annular rebound with a limited reduction in contact time. To break this limitation and further reduce contact time, this study focuses on optimizing the singularity number and arrangement. The effects of the singularity number and dimensionless spacing (l* scaled by the droplet diameter) on the dynamic and contact time characteristics of a droplet impacting the superhydrophobic surface are experimentally studied under varying Weber numbers (We). The experimental results indicate that in comparison to the single singularity, two singularities with l* < 1.0 can generate two liquid rings with four lateral liquid subunits due to the impalement at the high We region. Owing to the reduced equivalent diameter of the subunit, increasing We results in a gradually decreased contact time and accordingly breaks the limitation. However, the liquid film cannot be pierced at l* > 1.0 with a limited reduction. Considering the further reducing potential at l* < 1.0, four singularities are explored without a further reduced contact time due to the formed central liquid film. Using an additional central singularity, the central liquid film is pierced promoting its annular rebound. In consequence, five singularities significantly break the limitation in contact time, particularly a 61.7% reduction to the superhydrophobic flat surface at l* < 1.0.
RESUMEN
Reducing the contact time of droplet impacts on surfaces is crucial for various applications including corrosion prevention and anti-icing. This study aims to explore a novel strategy that greatly reduces contact time using a superhydrophobic mesh surface with multiple sets of mutually perpendicular ridges while minimizing the influence of the impacting location. The effects of the impact Weber numbers and ridge spacing on the characteristics of the impact dynamics and contact time are studied experimentally. The experimental results reveal that, for the droplet impact on mesh surfaces, ridges can segment the liquid film into independently multiple-retracting liquid subunits. The retracted subunits provide the upward driving force, which may promote the splashing or pancake bouncing of droplets. At this point, the contact time has a negligible sensitivity for the impacting position and is significantly reduced by up to 68%. Furthermore, the time, dynamic pressure, and energy criteria for triggering splashing and pancake bouncing are proposed theoretically. This work provides an understanding of the mechanism and the design guidelines for effectively reducing the contact time of the impacting droplet on superhydrophobic surfaces.
RESUMEN
Coalescence-induced jumping has promised a substantial reduction in the droplet detachment size and consequently shows great potential for heat-transfer enhancement in dropwise condensation. In this work, using molecular dynamics simulations, the evolution dynamics of the liquid bridge and the jumping velocity during coalescence-induced nanodroplet jumping under a perpendicular electric field are studied for the first time to further promote jumping. It is found that using a constant electric field, the jumping performance at the small intensity is weakened owing to the continuously decreased interfacial tension. There is a critical intensity above which the electric field can considerably enhance the stretching effect with a stronger liquid-bridge impact and, hence, improve the jumping performance. For canceling the inhibition effect of the interfacial tension under the condition of the weak electric field, a square-pulsed electric field with a paused electrical effect at the expansion stage of the liquid bridge is proposed and presents an efficient nanodroplet jumping even using the weak electric field.
RESUMEN
Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.
RESUMEN
The photochemistry of noncovalent interactions to promote organic transformations is an emerging approach to providing fresh opportunities in synthetic chemistry. Generally, the external substance is necessary to add as an interaction partner, thereby sacrificing the atom economy of the reaction. Herein, we describe a catalyst-free and noncovalent interaction-mediated strategy to access the olefination of N-tosylhydrazones using acetone as a solvent and an interaction partner. This protocol also features broad substrate scope, excellent functional group compatibility, and mild reaction conditions without transition metals. Moreover, the gram-scale synthesis of olefins and the generation of pharmaceutical intermediates highlighted its practical applicability. Lastly, mechanistic studies indicate that the reaction was initiated via noncovalent interactions between acetone and N-tosylhydrazone anion, which is also supported by density functional theory calculations.
RESUMEN
Background: Upper gastrointestinal bleeding encompasses bleeding arising from esophageal, gastric, duodenal, or pancreaticobiliary lesions above the Treitz ligament. Research indicates a close association between improper diet and upper gastrointestinal bleeding. Objective: This study aims to investigate the application effects of individualized diet nursing combined with the modified Glasgow-Blatchford scoring system in patients with upper gastrointestinal bleeding. Design: A randomized controlled study was conducted. Setting: The study took place at the First Hospital of Hebei Medical University. Participants: From January 2021 to October 2022, 80 patients with upper gastrointestinal bleeding were selected at our hospital. Using a random number table, they were divided into a control group and an observation group, each comprising 40 cases. Interventions: The control group received routine nursing, while the observation group received individualized diet nursing based on the Glasgow-Blatchford score in addition to routine nursing. Primary Outcome Measures: (1) bleeding frequency, hemostasis time, and hospital stay; (2) re-bleeding rate; (3) Glasgow-Blatchford scores; (4) quality of life; and (5) nursing satisfaction. Results: In the observation group, bleeding frequency, hemostasis time, and hospital stay significantly reduced compared to the control (P < .05). Post-nursing, the observation group had a lower re-bleeding rate (χ2=11.25, P < .05). Before nursing, no statistical differences existed in Glasgow-Blatchford and quality of life scores between groups (P > .05). Post-nursing, both groups saw reduced Glasgow-Blatchford scores, more so in the observation group (P < .05). Quality of life scores increased in both, more notably in the observation group (P < .05). Overall nursing satisfaction was higher in the observation group (P < .05). Conclusions: Individualized diet nursing, based on the Glasgow-Blatchford score, improves cure rates and quality of life and warrants promotion.