Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905792

RESUMEN

Many urban water bodies grapple with low flow flux and weak hydrodynamics. To address these issues, projects have been implemented to form integrated urban water bodies via interconnecting artificial lake or ponds with rivers, but causing pollution accumulation downstream and eutrophication. Despite it is crucial to assess eutrophication, research on this topic in urban interconnected water bodies is limited, particularly regarding variability and feasible strategies for remediation. This study focused on the Loucun river in Shenzhen, comprising an pond, river and artificial lake, evaluating water quality changes pre-(post-)ecological remediation and establishing a new method for evaluating the water quality index (WQI). The underwater forest project, involving basement improvement, vegetation restoration, and aquatic augmentation, in the artificial lake significantly reduced total nitrogen (by 43.58%), total phosphorus (by 79.17%) and algae density (by 36.90%) compared to pre-remediation, effectively controlling algal bloom. Rainfall, acting as a variable factor, exacerbated downstream nutrient accumulation, increasing total phosphorus by 4.56 times and ammonia nitrogen by 1.30 times compared to the dry season, and leading to algal blooms in the non-restoration pond. The improved WQI method effectively assesses water quality status. The interconnected water body exhibits obvious nutrient accumulation in downstream regions. A combined strategy that reducing nutrient and augmenting flux was verified to alleviate accumulation of nutrients downstream. This study provides valuable insights into pollution management strategies for interconnected pond-river-lake water bodies, offering significant reference for nutrient mitigation in such urban water bodies.


Asunto(s)
Eutrofización , Fósforo , Fósforo/análisis , Calidad del Agua , Nitrógeno/análisis , Ríos , Lagos , Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos
2.
Sci Total Environ ; 950: 175308, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117198

RESUMEN

The extensive use of plastic products has resulted in a significant influx of microplastics into aquatic ecosystems, particularly in highly urbanized areas and their associated river environments. However, the specific pathways and quantities through which these microplastics enter the river environment are still unclear, which poses a challenge in developing effective measures to mitigate their sources. In this paper, the spatiotemporal variations of microplastics from different sources in highly urbanized rivers within the Shenzhen Bay watershed were investigated through field sampling, experimental and statistical analysis, and the measures of microplastic reduction were discussed. The observation results exhibited a negative logarithmic correlation between the abundance of microplastics in river water and monthly rainfall (R = 0.994, MSE = 0.051, p < 0.05). When the monthly rainfall was <6 mm, the abundance of microplastics was absolutely dependent on point sources. While the rainfall exceeded 470 mm, the abundance was absolutely predominantly influenced by nonpoint source microplastics. The annual load of microplastics from the watershed was 5.39 × 1012 items, of which 61.6 % originated from point sources. Among the microplastics from point sources, 92.1 % were derived from fibers generated by textile washing. Fragmented microplastics (41.9 %) were the most common type of microplastics from nonpoint sources, primarily originating from the disintegration and weathering of disposable plastics. In the future, there is an expectation to reduce the microplastic load in the watershed to 15.9 % of the total by improving sewage treatment processes and infrastructure. This study can provide scientific guidance for environmental planning and serve as a warning regarding the impact of microplastics on ecosystems in urbanized areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA