Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014912

RESUMEN

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Asunto(s)
Retrovirus Endógenos , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Pez Cebra , Inmunidad Humoral , Inmunoglobulina M , Enfermedades de los Peces/genética
2.
J Immunol ; 211(5): 816-835, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486225

RESUMEN

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Asunto(s)
Antígeno B7-H1 , Pez Cebra , Humanos , Animales , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos , Mamíferos , Receptores Inmunológicos/metabolismo
3.
FASEB J ; 37(6): e22951, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227178

RESUMEN

Teleost fish are indispensable model organisms for comparative immunology research that should lead to an improved understanding of the general principles of vertebrate immune system design. Although numerous studies on fish immunology have been conducted, knowledge about the cell types that orchestrate piscine immune systems remains limited. Here, we generated a comprehensive atlas of immune cell types in zebrafish spleen on the basis of single-cell transcriptome profiling. We identified 11 major categories from splenic leukocyte preparations, including neutrophils, natural killer cells, macrophages/myeloid cells, T cells, B cells, hematopoietic stem and progenitor cells, mast cells, remnants of endothelial cells, erythroid cells, erythroid progenitors, and a new type of serpin-secreting cells. Notably, we derived 54 potential subsets from these 11 categories. These subsets showed differential responses to spring viremia of carp virus (SVCV) infection, implying that they have diverse roles in antiviral immunity. Additionally, we landscaped the populations with the induced expression of interferons and other virus-responsive genes. We found that trained immunity can be effectively induced in the neutrophil and M1-macrophage subsets by vaccinating zebrafish with inactivated SVCV. Our findings illustrated the complexity and heterogeneity of the fish immune system, which will help establish a new paradigm for the improved understanding of fish immunology.


Asunto(s)
Infecciones por Rhabdoviridae , Pez Cebra , Animales , Pez Cebra/genética , Bazo , Células Endoteliales , Perfilación de la Expresión Génica
4.
J Immunol ; 208(12): 2686-2701, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35675955

RESUMEN

The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.


Asunto(s)
Linfocitos T CD8-positivos , Pez Cebra , Animales , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígenos CD40 , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas , Epigénesis Genética , Activación de Linfocitos
5.
J Virol ; 96(16): e0079122, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35913215

RESUMEN

Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.


Asunto(s)
Carpas , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Inmunidad Innata , Interferones/metabolismo , Infecciones por Rhabdoviridae/inmunología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas de la Matriz Viral/metabolismo , Viremia/veterinaria
6.
J Immunol ; 206(9): 2001-2014, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33858963

RESUMEN

IgZ or its equivalent IgT is a newly discovered teleost specific Ig class that is highly specialized in mucosal immunity. However, whether this IgZ/IgT class participates in other biological processes remains unclear. In this study, we unexpectedly discovered that IgZ is highly expressed in zebrafish ovary, accumulates in unfertilized eggs, and is transmitted to offspring from eggs to zygotes. Maternally transferred IgZ in zygotes is found at the outer and inner layers of chorion, perivitelline space, periphery of embryo body, and yolk, providing different lines of defense against pathogen infection. A considerable number of IgZ+ B cells are found in ovarian connective tissues distributed between eggs. Moreover, pIgR, the transporter of IgZ, is also expressed in the ovary and colocalizes with IgZ in the zona radiata of eggs. Thus, IgZ is possibly secreted by ovarian IgZ+ B cells and transported to eggs through association with pIgR in a paracrine manner. Maternal IgZ in zygotes showed a broad bacteriostatic activity to different microbes examined, and this reactivity can be manipulated by orchestrating desired bacteria in water where parent fish live or immunizing the parent fish through vaccination. These observations suggest that maternal IgZ may represent a group of polyclonal Abs, providing protection against various environmental microbes encountered by a parent fish that were potentially high risk to offspring. To our knowledge, our findings provide novel insights into a previously unrecognized functional role of IgZ/IgT Ig in the maternal transfer of immunity in fish, greatly enriching current knowledge about this ancient Ig class.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de los Peces/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Isotipos de Inmunoglobulinas/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Aeromonas hydrophila/inmunología , Aeromonas hydrophila/fisiología , Animales , Resistencia a la Enfermedad/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Femenino , Enfermedades de los Peces/microbiología , Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/metabolismo , Masculino , Herencia Materna/genética , Herencia Materna/inmunología , Vibrio/clasificación , Vibrio/inmunología , Vibrio/fisiología , Pez Cebra/genética , Pez Cebra/microbiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Cigoto/inmunología , Cigoto/metabolismo , Cigoto/microbiología
7.
J Biol Chem ; 295(4): 1120-1141, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31852739

RESUMEN

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, knowledge about the NLRP3 inflammasome in nonmammalian species remains limited. Here, we report the molecular and functional identification of an NLRP3 homolog (DrNLRP3) in a zebrafish (Danio rerio) model. We found that DrNLRP3's overall structural architecture was shared with mammalian NLRP3s. It initiates a classical inflammasome assembly for zebrafish inflammatory caspase (DrCaspase-A/-B) activation and interleukin 1ß (DrIL-1ß) maturation in an apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent manner, in which DrNLRP3 organizes DrASC into a filament that recruits DrCaspase-A/-B by homotypic pyrin domain (PYD)-PYD interactions. DrCaspase-A/-B activation in the DrNLRP3 inflammasome occurred in two steps, with DrCaspase-A being activated first and DrCaspase-B second. DrNLRP3 also directly activated full-length DrCaspase-B and elicited cell pyroptosis in a gasdermin E (GSDME)-dependent but ASC-independent manner. These two events were tightly coordinated by DrNLRP3 to ensure efficient IL-1ß secretion for the initiation of host innate immunity. By knocking down DrNLRP3 in zebrafish embryos and generating a DrASC-knockout (DrASC-/-) fish clone, we characterized the function of the DrNLRP3 inflammasome in anti-bacterial immunity in vivo The results of our study disclosed the origin of the NLRP3 inflammasome in teleost fish, providing a cross-species understanding of the evolutionary history of inflammasomes. Our findings also indicate that the NLRP3 inflammasome may coordinate inflammatory cytokine processing and secretion through a GSDME-mediated pyroptotic pathway, uncovering a previously unrecognized regulatory function of NLRP3 in both inflammation and cell pyroptosis.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Receptores de Estrógenos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Caspasas/metabolismo , Células HEK293 , Humanos , Ratones , Agregado de Proteínas , Receptores de Estrógenos/química , Proteínas de Pez Cebra/química
8.
Immunology ; 162(1): 105-120, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979273

RESUMEN

Immunoglobulin Z (IgZ) or its equivalent immunoglobulin T (IgT) is a newly identified immunoglobulin (Ig) class from teleost fish. This Ig class is characterized by its involvement in mucosa-associated lymphoid tissues (MALTs) for mucosal defence against pathogen infection. Recently, several subclass members of IgZ/IgT, such as IgZ, IgZ2, Igτ1, Igτ2 and Igτ3, have been further identified from zebrafish, common carp and rainbow trout. However, the functional diversity and correlation among these subclasses remain uncertain. Here, we explored the differential immune reactions of the IgZ and IgZ2 subclasses in antibacterial immunity in a zebrafish model. IgZ was extensively distributed in the peripheral serum and skin/gill MALTs and showed a rapid induction upon bacterial infection. IgZ2 was specialized in skin/gill MALTs and showed a strong induction following IgZ production. Correspondingly, the IgZ+ B cells had a wider distribution in the systemic primary/secondary lymphoid tissues and MALTs than the IgZ2+ B cells, which were predominant in MALTs. IgZ and IgZ2 exhibited a complementary effect in antibacterial immunity by possessing differential abilities. That is, IgZ is preferentially involved in bactericidal reaction that is in part C1q-dependent, and IgZ2 participates in neutralization action through bacteria-coating activity. The production of IgZ largely depended on the αß T/CD4+ T cells, whereas that of IgZ2 did not, suggesting the different dependencies of IgZ and IgZ2 on systemic immunity. Our findings demonstrate that the functional behaviour and mechanism of the IgZ/IgT family are more diverse than previously recognized and thus improve the current knowledge about this ancient Ig class.


Asunto(s)
Antibacterianos/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Isotipos de Inmunoglobulinas/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Animales , Infecciones Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Branquias/inmunología , Inmunidad Mucosa/inmunología , Tejido Linfoide/inmunología , Membrana Mucosa/inmunología , Oncorhynchus mykiss/inmunología
9.
FASEB J ; 34(6): 7786-7809, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285982

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is one of the most-characterized cytoplasmic DNA sensors in humans and other mammals. However, knowledge about cGAS homologs in nonmammalian species remains limited. In this study, we report the molecular and functional identification of two cGAS homologs, namely, DrcGASa and DrcGASb, from a zebrafish (Danio rerio) model. DrcGASa and DrcGASb share the same overall conservative structural architectures and functional domains/residues to mammalian cGASs. Both homologs synthesized a 2'3'-cGAMP isomer but not a 3'3'-cGAMP isomer via oligomerization in response to DNA stimulation. Overexpression of DrcGASa/b in HEK293T cells and zebrafish embryos significantly activated NF-κB and IFN-I signaling pathways in a STING-dependent manner. Knockdown of DrcGASa or DrSTING impaired such activations, thereby reducing the host innate immunity against bacterial and viral infections. DrcGASa, but not DrcGASb, was involved in immunoglobulin Z-mediated mucosal immunity in gill-associated lymphoid tissue, suggesting differential functions between the two DrcGASs. This reaction was associated with the DrcGAS-DrSTING-IFNφ1 signaling axis in GALT's γδ T cells. Our findings provide experimental evidence that a modern cGAS-STING pathway that mainly participates in IFN-mediated immunity originated from teleost fish based on the functional constraint of cGAS and STING proteins during vertebrate evolution.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Transducción de Señal/inmunología , Pez Cebra/inmunología , Animales , Línea Celular , Células HEK293 , Humanos
10.
J Immunol ; 203(9): 2425-2442, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562209

RESUMEN

The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.


Asunto(s)
Concanavalina A/farmacología , Hepatitis/inmunología , Homeostasis , Inflamación/etiología , Hígado/inmunología , Receptores Inmunológicos/fisiología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Proteínas de Drosophila/fisiología , Células HEK293 , Humanos , Proteínas de Transporte Vesicular/fisiología , Pez Cebra
11.
J Immunol ; 201(7): 1946-1966, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30150286

RESUMEN

NLRP1 inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, the existence of this inflammasome in nonmammalian species remains poorly understood. In this study, we report the molecular and functional identification of an NLRP1 homolog, Danio rerio NLRP1 (DrNLRP1) from a zebrafish (D. rerio) model. This DrNLRP1 possesses similar structural architecture to mammalian NLRP1s. It can trigger the formation of a classical inflammasome for the activation of zebrafish inflammatory caspases (D. rerio Caspase [DrCaspase]-A and DrCaspase-B) and maturation of D. rerio IL-1ß in a D. rerio ASC (DrASC)-dependent manner. In this process, DrNLRP1 promotes the aggregation of DrASC into a filament with DrASCCARD core and DrASCPYD cluster. The assembly of DrNLRP1 inflammasome depends on the CARD-CARD homotypic interaction between DrNLRP1 and DrASCCARD core, and PYD-PYD interaction between DrCaspase-A/B and DrASCPYD cluster. The FIIND domain in DrNLRP1 is necessary for inflammasome assembly. To understand the mechanism of how the two DrCaspases are coordinated in DrNLRP1 inflammasome, we propose a two-step sequential activation model. In this model, the recruitment and activation of DrCaspase-A/B in the inflammasome is shown in an alternate manner, with a preference for DrCaspase-A followed by a subsequent selection for DrCaspase-B. By using morpholino oligonucleotide-based knockdown assays, the DrNLRP1 inflammasome was verified to play important functional roles in antibacterial innate immunity in vivo. These observations demonstrate that the NLRP1 inflammasome originated as early as in teleost fish. This finding not only gives insights into the evolutionary history of inflammasomes but also provides a favorable animal model for the study of NLRP1 inflammasome-mediated immunology and diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamasomas/metabolismo , Inflamación/inmunología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Evolución Biológica , Proteínas Adaptadoras de Señalización CARD , Caspasas/metabolismo , Clonación Molecular , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Humanos , Interleucina-1beta/metabolismo , Modelos Inmunológicos , Proteínas NLR , Agregación Patológica de Proteínas , Vertebrados
12.
Proc Natl Acad Sci U S A ; 114(38): 10119-10124, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864530

RESUMEN

The mechanism underlying how transcription factors regulate mesenchymal stem cell lineage commitment remains unclear. To determine the role of core-binding factor subunit beta (Cbfß) in osteoblast lineage commitment, we generated three mouse models by deleting Cbfß at different osteoblast lineage stages. We demonstrated that the Cbfßf/fPrx1-Cre, Cbfßf/fCol2α1-Cre, and Cbfßf/fOsx-Cre mice exhibited severe osteoporosis with substantial accumulation of marrow adipocytes resembling aged bone from enhanced adipogenesis, indicating that mesenchymal stem cells and osteoblasts can be programed and reprogramed, respectively, into adipocytes. Consistently, Cbfß-deficient calvarial cells and bone marrow mesenchymal stem cells displayed strong adipogenic potential, with 5- to ∼70-fold increased adipocyte gene expression, which can be rescued by Cbfß overexpression. Canonical Wnt signaling was impeded in the Cbfß-deficient cells, with ∼80% decrease of Wnt10b expression. Accordingly, ChIP and luciferase assays demonstrated that Cbfß/RUNX2 binds to Wnt10b promoter driving Wnt10b expression. Furthermore, Wnt3a suppressed adipogenesis but did not rescue osteoblastogenesis in Cbfß-deficient cells. Notably, mixing culture of Cbfß-deficient with normal cells demonstrates that Cbfß functions not only through WNT paracrine pathway but also through endogenous signaling. Further analysis shows that Cbfß/RUNX2 inhibits c/ebpα expression at transcriptional level. Our results show that, besides its osteogenic role, Cbfß governs osteoblast-adipocyte lineage commitment both cell nonautonomously through enhancing ß-catenin signaling and cell autonomously through suppressing adipogenesis gene expression to maintain osteoblast lineage commitment, indicating Cbfß may be a therapeutic target for osteoporosis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Osteoblastos/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Adipocitos/citología , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Osteoblastos/citología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/genética
13.
J Immunol ; 197(8): 3198-3213, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27647835

RESUMEN

Scavenger receptor class A member 5 (SCARA5) and high-mobility group box 1 (HMGB1) protein have become increasingly attractive for their critical functions in innate inflammatory reactions and disorders. However, the functional relevance between these two molecules has never been described. This study discovered that SCARA5 is an HMGB1 recognition receptor that is negatively involved in HMGB1-mediated inflammation in pufferfish (Tetraodon nigroviridis) and zebrafish (Danio rerio) models. Hence, SCARA5 is added as a new member to the HMGB1 receptor family. Tetraodon HMGB1 (TnHMGB1) is a trafficking protein that can be secreted from the nucleus to the outside of cells upon CpG-oligodeoxynucleotide (ODN) stimulation. This protein exerts a strong synergistic effect on CpG-ODN-induced inflammation, as determined by the enhanced proinflammatory cytokine expression through coadministration of TnHMGB1 with CpG-ODN and impaired inflammatory responses through TnHMGB1 depletion. Tetraodon SCARA5 (TnSCARA5) is an inducible protein detected upon TnHMGB1 stimulation; this protein plays an inhibitory role in CpG-ODN-induced inflammation because TnSCARA5 overexpression suppresses cell responsiveness to CpG-ODN induction, whereas TnSCARA5 ablation intensifies the inflammatory reactions. TnSCARA5 can strongly associate with TnHMGB1 through the A and B boxes, depending on the redox state of the cysteine residues, but T box inhibits the association. TnSCARA5 mediates the endocytosis of TnHMGB1 into lysosomes. Results suggest that TnSCARA5 inhibits the CpG-ODN-mediated inflammation via the clearance of HMGB1 mediator for CpG-ODN stimulant. The above findings highlight a novel regulatory mechanism underlying innate inflammation and provide new insights into the clinical treatment of HMGB1-mediated diseases.


Asunto(s)
Proteína HMGB1/metabolismo , Inflamación/metabolismo , Receptores Depuradores de Clase A/metabolismo , Tetraodontiformes/metabolismo , Pez Cebra/metabolismo , Animales , Clonación Molecular , Modelos Animales de Enfermedad , Proteína HMGB1/genética
14.
J Immunol ; 197(1): 151-67, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27206770

RESUMEN

Single Ig IL-1R-related molecule (SIGIRR, also called IL-1R8 or Toll/IL-1R [TIR]8), a negative regulator for Toll/IL-1R signaling, plays critical roles in innate immunity and various diseases in mammals. However, the occurrence of this molecule in ancient vertebrates and its function in liver homeostasis and disorders remain poorly understood. In this study, we identified a SIGIRR homology from zebrafish (Danio rerio [DrSIGIRR]) by using a number of conserved structural and functional hallmarks to its mammalian counterparts. DrSIGIRR was highly expressed in the liver. Ablation of DrSIGIRR by lentivirus-delivered small interfering RNA in the liver significantly enhanced hepatic inflammation in response to polyinosinic-polycytidylic acid [poly(I:C)] stimulation, as shown by the upregulation of inflammatory cytokines and increased histological disorders. In contrast, depletion of TIR domain-containing adaptor inducing IFN-ß (TRIF) or administration of TRIF signaling inhibitor extremely abrogated the poly(I:C)-induced hepatic inflammation. Aided by the zebrafish embryo model, overexpression of DrSIGIRR in vivo significantly inhibited the poly(I:C)- and TRIF-induced NF-κB activations; however, knockdown of DrSIGIRR promoted such activations. Furthermore, pull-down and Duolink in situ proximity ligation assay assays showed that DrSIGIRR can interact with the TRIF protein. Results suggest that DrSIGIRR plays an inhibitory role in TRIF-mediated inflammatory reactions by competitive recruitment of the TRIF adaptor protein from its TLR3/TLR22 receptor. To our knowledge, this study is the first to report a functional SIGIRR homolog that existed in a lower vertebrate. This molecule is essential to establish liver homeostasis under inflammatory stimuli. Overall, the results will enrich the current knowledge about SIGIRR-mediated immunity and disorders in the liver.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Peces/metabolismo , Inflamación/inmunología , Hígado/inmunología , Receptores de Interleucina-1/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células Cultivadas , Citocinas/metabolismo , Proteínas de Peces/genética , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Hígado/patología , Mamíferos , FN-kappa B/metabolismo , Poli I-C/inmunología , ARN Interferente Pequeño/genética , Receptores de Interleucina-1/genética , Transducción de Señal/genética , Receptor Toll-Like 3/metabolismo , Proteínas de Pez Cebra/genética
15.
J Immunol ; 196(4): 1686-99, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26792807

RESUMEN

TIM-1 and TIM-4 proteins have become increasingly attractive for their critical functions in immune modulation, particularly in CD4(+) Th2 cell activation. Thus, these proteins were hypothesized to regulate adaptive humoral immunity. However, further evidence is needed to validate this hypothesis. This study describes the molecular and functional characteristics of TIM-1 and TIM-4 homologs from a zebrafish (Danio rerio) model (D. rerio TIM [DrTIM]-1 and DrTIM-4). DrTIM-1 and DrTIM-4 were predominantly expressed in CD4(+) T cells and MHC class II(+) APCs under the induction of Ag stimulation. Blockade or knockdown of both DrTIM-1 and DrTIM-4 significantly decreased Ag-specific CD4(+) T cell activation, B cell proliferation, Ab production, and vaccinated immunoprotection against bacterial infection. This result suggests that DrTIM-1 and DrTIM-4 serve as costimulatory molecules required for the full activation of adaptive humoral immunity. DrTIM-1 was detected to be a trafficking protein located in the cytoplasm of CD4(+) T cells. It can translocate onto the cell surface under stimulation by TIM-4-expressing APCs, which might be a precise regulatory strategy for CD4(+) T cells to avoid self-activation before APCs stimulation. Furthermore, a unique alternatively spliced soluble DrTIM-4 variant was identified to exert a negative regulatory effect on the proliferation of CD4(+) T cells. The above findings highlight a novel costimulatory mechanism underlying adaptive immunity. This study enriches the current knowledge on TIM-mediated immunity and provides a cross-species understanding of the evolutionary history of costimulatory systems throughout vertebrate evolution.


Asunto(s)
Inmunidad Humoral/inmunología , Activación de Linfocitos/inmunología , Proteínas del Tejido Nervioso/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Inmunidad Adaptativa/inmunología , Animales , Separación Celular , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Receptor Celular 1 del Virus de la Hepatitis A , Masculino , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
16.
Biochem J ; 474(8): 1373-1394, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28219939

RESUMEN

Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2 The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2 Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants.


Asunto(s)
Proteínas de Peces/metabolismo , Modelos Moleculares , Peroxirredoxinas/metabolismo , Tetraodontiformes , Sustitución de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cisteína/química , Proteínas de Peces/antagonistas & inhibidores , Proteínas de Peces/química , Proteínas de Peces/genética , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Peroxirredoxinas/antagonistas & inhibidores , Peroxirredoxinas/química , Peroxirredoxinas/genética , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
PLoS Genet ; 11(4): e1005118, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25835551

RESUMEN

The large yellow croaker Larimichthys crocea (L. crocea) is one of the most economically important marine fish in China and East Asian countries. It also exhibits peculiar behavioral and physiological characteristics, especially sensitive to various environmental stresses, such as hypoxia and air exposure. These traits may render L. crocea a good model for investigating the response mechanisms to environmental stress. To understand the molecular and genetic mechanisms underlying the adaptation and response of L. crocea to environmental stress, we sequenced and assembled the genome of L. crocea using a bacterial artificial chromosome and whole-genome shotgun hierarchical strategy. The final genome assembly was 679 Mb, with a contig N50 of 63.11 kb and a scaffold N50 of 1.03 Mb, containing 25,401 protein-coding genes. Gene families underlying adaptive behaviours, such as vision-related crystallins, olfactory receptors, and auditory sense-related genes, were significantly expanded in the genome of L. crocea relative to those of other vertebrates. Transcriptome analyses of the hypoxia-exposed L. crocea brain revealed new aspects of neuro-endocrine-immune/metabolism regulatory networks that may help the fish to avoid cerebral inflammatory injury and maintain energy balance under hypoxia. Proteomics data demonstrate that skin mucus of the air-exposed L. crocea had a complex composition, with an unexpectedly high number of proteins (3,209), suggesting its multiple protective mechanisms involved in antioxidant functions, oxygen transport, immune defence, and osmotic and ionic regulation. Our results reveal the molecular and genetic basis of fish adaptation and response to hypoxia and air exposure. The data generated by this study will provide valuable resources for the genetic improvement of stress resistance and yield potential in L. crocea.


Asunto(s)
Adaptación Fisiológica , Proteínas de Peces/genética , Genoma , Presión Osmótica , Estrés Oxidativo , Perciformes/genética , Animales , Proteínas de Peces/metabolismo , Perciformes/metabolismo , Transcriptoma
18.
Int J Mol Sci ; 18(6)2017 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-28555019

RESUMEN

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and retinoic acid-inducible gene I (RIG-I) are two important cytosolic pattern recognition receptors (PRRs) in the recognition of pathogen-associated molecular patterns (PAMPs), initiating innate antibacterial and antiviral signaling pathways. However, the relationship between these PRRs, especially in teleost fish models, is rarely reported. In this article, we describe the mutual regulation of zebrafish NOD2 (DrNOD2) and RIG-I (DrRIG-I) in innate immune responses. Luciferase assays were conducted to determine the activation of NF-κB and interferon signaling. Morpholino-mediated knockdown and mRNA-mediated rescue were performed to further confirm the regulatory roles between DrNOD2 and DrRIG-I. Results showed that DrNOD2 and DrRIG-I shared conserved structural hallmarks with their mammalian counterparts, and activated DrRIG-I signaling can induce DrNOD2 production. Surprisingly, DrNOD2-initiated signaling can also induce DrRIG-I expression, indicating that a mutual regulatory mechanism may exist between them. Studies conducted using HEK293T cells and zebrafish embryos showed that DrRIG-I could negatively regulate DrNOD2-activated NF-κB signaling, and DrNOD2 could inhibit DrRIG-I-induced IFN signaling. Moreover, knocking down DrRIG-I expression by morpholino could enhance DrNOD2-initiated NF-κB activation, and vice versa, which could be rescued by their corresponding mRNAs. Results revealed a mutual feedback regulatory mechanism underlying NOD2 and RIG-I signaling pathways in teleosts. This mechanism reflects the coordination between cytosolic antibacterial and antiviral PRRs in the complex network of innate immunity.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Proteína 58 DEAD Box/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Animales , Proteína 58 DEAD Box/genética , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pez Cebra
19.
J Biol Chem ; 290(32): 19942-54, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26088136

RESUMEN

Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis.

20.
Hepatology ; 61(5): 1708-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25501710

RESUMEN

UNLABELLED: Liver fibrosis, a major cause of end-stage liver diseases, is closely regulated by multiple growth factors and cytokines. The correlation of fibroblast growth factor 2 (FGF2) with chronic liver injury has been reported, but the exact functions of different FGF2 isoforms in liver fibrogenesis remain unclear. Here, we report on the differential expression patterns and functions of low- and high-molecular-weight FGF2 (namely, FGF2(lmw) and FGF2(hmw) , respectively) in hepatic fibrogenesis using a CCl4 -induced mouse liver fibrosis model. FGF2(hmw) displayed a robust increase in CCl4 -induced hepatic fibrosis and promoted fibrogenesis. In contrast, endogenous FGF2(lmw) exhibited a slight increase in hepatic fibrosis and suppressed this pathological progression. Moreover, exogenous administration of recombinant FGF2(lmw) potently ameliorated CCl4 -induced liver fibrosis. Mechanistically, we showed that FGF2(lmw) treatment attenuated hepatic stellate cell activation and fibrosis by epigenetic down-regulation of Delta-like 1 expression through the p38 mitogen-activated protein kinase pathway. CONCLUSION: FGF2(lmw) and FGF2(hmw) have distinct roles in liver fibrogenesis. These findings demonstrate a potent antifibrotic effect of FGF2(lmw) administration, which may provide a novel approach to treat chronic liver diseases.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/fisiología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Animales , Proteínas de Unión al Calcio , Factor 2 de Crecimiento de Fibroblastos/fisiología , Ratones , Ratones Endogámicos C57BL , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA