RESUMEN
Under the "Double Carbon" target, the development of low-carbon agriculture requires a holistic comprehension of spatially and temporally explicit greenhouse gas (GHG) emissions associated with agricultural products. However, the lack of systematic evaluation at a fine scale presents considerable challenges in guiding localized strategies for mitigating GHG emissions from crop production. Here, we analyzed the county-level carbon footprint (CF) of China's rice production from 2007 to 2018 by coupling life cycle assessment and the DNDC model. Results revealed a significant annual increase of 74.3 kg CO2-eq ha-1 in the average farm-based CF (FCF), while it remained stable for the product-based CF (PCF). The CF exhibited considerable variations among counties, ranging from 2324 to 20,768 kg CO2-eq ha-1 for FCF and from 0.36 to 3.81 kg CO2-eq kg-1 for PCF in 2018. The spatiotemporal heterogeneities of FCF were predominantly influenced by field CH4 emissions, followed by diesel consumption and soil organic carbon sequestration. Scenario analysis elucidates that the national total GHG emissions from rice production could be significantly reduced through optimized irrigation (48.5%) and straw-based biogas production (18.0%). Moreover, integrating additional strategies (e.g., advanced crop management, optimized fertilization, and biodiesel application) could amplify the overall emission reduction to 76.7% while concurrently boosting the rice yield by 11.8%. Our county-level research provides valuable insights for the formulation of targeted GHG mitigation policies in rice production, thereby advancing the pursuit of carbon-neutral agricultural practices.
Asunto(s)
Gases de Efecto Invernadero , Oryza , Suelo , Carbono , Dióxido de Carbono/análisis , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Huella de Carbono , China , Óxido Nitroso/análisisRESUMEN
BACKGROUND: Subcutaneous immunotherapy (SCIT) is now the only treatment that can modify the natural course of allergic rhinitis (AR). However, not all children with AR benefit from SCIT. OBJECTIVE: To evaluate the efficacy of SCIT in dust-mites-induced AR children and explore correlative factors predicting treatment response to SCIT. METHODS: 225 children aged 4-17 years old with AR were recruited from January 2016 to September 2019, and monitored at baseline, 4, 12, and 24 months after the start of SCIT treatment. The visual-analogue-score (VAS) was used to assess the clinical symptoms. Multivariate binary logistic regression analyses and receiver operating characteristic curves were used to explore correlative factors in predicting the efficacy of SCIT. RESULTS: The significant declines in VAS started after 4 months of SCIT and continued to improve throughout the study compared with baseline. An increase in children's age (OR=0.688, 95%CI: 0.479-0.988) and those with allergic history (OR=0.097, 95%CI: 0.009-1.095) were negatively associated with the risk of poor efficacy. Polysensitized children were more likely to suffer poor efficacy (OR=15.511 95%CI: 1.319-182.355). The clinical response at month 4 (r=0.707) and month 12 (r=0.925) was related to that at month 24. The area under the curve (AUC) for improvement at month 4 and month 12 was 0.746 and 0.860, respectively. CONCLUSION: Our study confirmed the clinical efficacy of SCIT in AR children. Children with younger age, negative allergic history, and multiple allergens may predict a worse efficacy. The onset of action and the clinical response to SCIT in the second year can be predicted as early as by month 4.
Asunto(s)
Rinitis Alérgica , Animales , Humanos , Niño , Preescolar , Adolescente , Rinitis Alérgica/terapia , Pyroglyphidae , Alérgenos/uso terapéutico , Inmunoterapia , Resultado del Tratamiento , Inyecciones Subcutáneas , Desensibilización InmunológicaRESUMEN
The prevalence of malnutrition is high among oncology patients in Northern China. Malnutrition is related to the longer hospital stay, and it can be used to predict the prognostic outcome of patients. This work focused on investigating the relationship of nutritional condition with the length of hospital stay (LOS) in Northern Chinese patients with lung adenocarcinoma (LUAD). The Patient-Generated Subjective Global Assessment (PG-SGA), Nutritional Risk Screening 2002 (NRS 2002) score, recent weight loss and BMI were assessed in a probabilistic sample of 389 LUAD patients without epidermal growth factor receptor (EGFR) mutations. This study collected the demographic and clinical features of patients in a prospective manner. Then, we examined the association of nutritional status with LOS among the population developing LUAD. According to the PG-SGA, 63 (16·3 %), 174 (44·7 %) and 78 (20·1 %) patients were at risk for undernutrition, moderate undernutrition and severe undernutrition, respectively. Nutritional risk was found in 141 (36·2 %) patients based on the NRS 2002. The average LOS for tumour patients in Northern China was 12·5 d. At admission, a risk of undernutrition or undernutrition according to the PG-SGA (P < 0·001), NRS 2002 (P < 0·001) and latest weight loss (P < 0·001) predicted the longer LOS. LOS was related to nutritional status and hospitalisation expenses (P < 0·001). LUAD patients who stayed in the ICU had a poorer nutritional status and a longer LOS (P < 0·001). In Northern Chinese patients with LUAD, a risk for undernutrition evaluated by the PG-SGA, the NRS 2002 and recent weight loss, but not BMI, could predict a longer LOS.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Desnutrición , Adenocarcinoma del Pulmón/complicaciones , Humanos , Tiempo de Internación , Desnutrición/complicaciones , Desnutrición/diagnóstico , Desnutrición/epidemiología , Evaluación Nutricional , Estudios Prospectivos , Pérdida de PesoRESUMEN
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway.
Asunto(s)
Lilium , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Respuesta al Choque Térmico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genéticaRESUMEN
Sulfate radical (â¢SO4-)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17ß-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br- and Cl- in water can promote the degradation rate, HCO3- has an inhibitory effect on the reaction, SO42- and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Estradiol , Oxidación-Reducción , Sulfatos , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Surface tension and specular neutron reflectivity measurements have been used, for the first time to systematically study both the interfacial structure and composition of monolayers of the soluble surfactant, sodium dodecyl sulfate containing a low-dose, poorly water soluble drug, testosterone enanthate. Modelling of the specular neutron reflectivity data suggests that the hydrophobic testosterone enanthate was adsorbed in the C12 hydrophobic tail region of the surfactant monolayer, regardless of the concentration of surfactant at the interface and whether or not additional drug was added to the interface. The location of the hydrophobic drug in the tail region of the surfactant monolayer is supported by the results of classical, large-scale molecular dynamics simulations. The thickness of the surfactant monolayer obtained, in the presence and absence of drug, using molecular dynamics simulations was in good agreement with the corresponding values obtained from the specular neutron reflectivity measurements. The stoichiometry of surfactant:drug at the air-water interface at sodium dodecyl sulfate concentrations above the critical micelle concentration was determined from specular neutron reflectivity measurements to be approximately 3 : 1, and remained constant after the spreading of further testosterone enanthate at the interface. Significantly, this stoichiometry was the same as that obtained in the micelles from bulk solubilisation studies. Important insights into the preferred location of drug in surfactant monolayers at the air-water interface as well as its effect on the structure of the monolayer have been obtained from our combined use of experimental and simulation techniques.
Asunto(s)
Portadores de Fármacos/química , Dodecil Sulfato de Sodio/química , Testosterona/análogos & derivados , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Simulación de Dinámica Molecular , Tensión Superficial , Tensoactivos/química , Testosterona/químicaRESUMEN
We developed a novel approach to determine formamidopyrimidine DNA glycosylase (FPG) activity by taking advantage of target-induced self-primed rolling circle amplification (RCA) and magnetic nanoprobes. Herein, a unique nick (8-oxoguanine, 8-oxoG) was positioned in duplex DNA containing P-circle and P1, which together serve as a FPG substrate, RCA template, and RCA primer probe. The presence of FPG specifically binds 8-oxoG and cleaves the P-circle into two parts, producing 5'-phosphoryl termini. A phosphodiester bond between the 5'-phosphoryl and 3'-hydroxyl termini was formed with the addition of T4 DNA ligase, producing an unnicked circular strand. Using the unnicked strand as the RCA template, the P1 hybridized with the circle probe as a primer will trigger the RCA process. The RCA reaction produces amounts of long tandem-repeat DNA tiles with multiple recognizing regions for the FAM modified DNA probes (FP) and biotin-modified DNA probes (BP). With the streptavidin-biotin interaction, the BPs and FPs can be easily immobilized on the surface of streptavidin-modified magnetic microbeads (MBs). Due to the RCA enhanced and highly-concentrated fluorescence accumulation on the MBs, an ultralow detection limit of 1.033 U mL-1 for FPG was obtained. Combined with the high tolerance capability of human blood serum owing to magnetic isolation, the FPG assays in human blood serum were also obtained using fluorescence and confocal laser scanning microscopy. These results indicate that this robust self-primed RCA combined with magnetic nanoprobes is an excellent candidate for quantitatively monitoring the FPG activity responsible for DNA oxidative damage-related clinical diagnosis and therapy.
Asunto(s)
ADN-Formamidopirimidina Glicosilasa/análisis , Nanopartículas , Técnicas de Amplificación de Ácido Nucleico , Sondas de ADN , ADN-Formamidopirimidina Glicosilasa/sangre , Humanos , MagnetismoRESUMEN
Teether is a special toy used for infants oral contact. In this paper, a residual and migration detection method was developed using gas chromatography-tandem mass spectrometry for 20 screened hazardous substances in teethers. Fifteen substances were detected in 59 samples, with residual amounts and detection rates ranging from 0.01 mgâ kg-1 to 106.15 mgâ kg-1 and from 3.39 % to 84.7 % respectively. Then, 12 substances were detected in simulated saliva at migration levels ranging from 0.0143 mgâ kg-1 to 20.03 mgâ kg-1, with detection rates ranging from 1.69 % to 76.3 %. Statistically, the average migration rate of each substance ranged from 8.18 % to 53.28 % depending on the properties of the substance and the sample. The exposure risk of infants to teethers was evaluated separately for two age groups. The hazard quotient (HQ) and hazard index (HI) values for the analytes were higher in the 3-12-month age group than in the 12-24-month age group. The HQ values of triphenylphosphine oxide, benzocaine, and N-methylformanilide were relatively high, with averages of 1.2 × 10-2, 2.5 × 10-3, and 1.6 × 10-3, respectively, and the max HI of the 12 substances was 0.04. The HI and HQ values of the analytes were all below 1, indicating that the non-carcinogenic risks of analytes in teethers are at an acceptable level.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Sustancias Peligrosas , Juego e Implementos de Juego , Saliva , Humanos , Lactante , Medición de Riesgo , Cromatografía de Gases y Espectrometría de Masas/métodos , Sustancias Peligrosas/análisis , Saliva/química , Espectrometría de Masas en Tándem/métodos , Preescolar , Límite de DetecciónRESUMEN
UV/Peracetic Acid (UV/PAA), as an innovative advanced oxidation process (AOP), is employed to treat bisphenol A (BPA) in water through the generation of hydroxyl radicals (â¢OH) and carbon-centered radicals (R-Câ¢). The impact of halide ions (Cl-; Br-; I-) on the efficiency of UV/PAA was investigated for the first time under varying pH levels. The presence of halide ions exerted an influence on the reactivity of â¢OH and R-Câ¢, exhibiting varying degrees of impact across different pH conditions. It was discovered that pH exerts a significant influence on its efficiency, with optimal removal performance observed at a pH 9. The degradation of BPA was inhibited by Cl- through the generation of reactive chlorine species (RCS), which triggers the interconversion between â¢OH and R-Câ¢. Reactive bromine species (RBS) were produced in the presence of Br-, facilitating BPA degradation and generating HOBr as a supplementary source of â¢OH radicals. I- primarily generate reactive iodine species (RIS) through photolysis, which facilitates the degradation of BPA. The transformation of BPA involves hydroxylation, demethylation, halogenation, and cleavage reactions to form various products and pathways. The toxicity test demonstrates that the UV/PAA treatment of BPA exhibits lower toxicity, thereby indicating its environmentally friendly.
RESUMEN
The ecological impact of emerging contaminants (ECs) in aquatic environments has raised concerns, particularly with regards to urine as a significant source of such contaminants in wastewater. The current investigation used the UV/Peracetic Acid (UV/PAA) processes, an innovative advanced oxidation technology, to effectively separate two emerging pollutants from urine at its source, namely, ciprofloxacin (CIP) and bisphenol A(BPA). The research findings demonstrate that the presence of the majority of characteristic ions has minimal impact on the degradation of ECs. However, in synthetic hydrolyzed urine, only NH4+ inhibits the degradation of two types of ECs, with a more pronounced effect observed on CIP degradation compared to BPA.The impact of halogen ions, specifically Cl- and I-, on the degradation of CIP in synthetic hydrolyzed urine was a complex phenomenon. When these two halogen ions are present individually, the generation of reactive halogen species (RHS) within the system enhances the degradation of CIP. However, when both types of ions coexist, the formation of diatomic radical species partially inhibits degradation. In terms of BPA degradation, while the production of reactive chlorine species (RCS) to some extent hinders the reaction rate, the generation of reactive iodine species (RIS) promotes the overall process. CIP undergoes fragmentation of the piperazine and quinoline rings, decarboxylation, defluorination reactions, as well as substitution reactions, leading to the formation of products with simplified structures. The degradation of BPA occurs gradually through hydroxyl and halogen substitution as well as isopropyl cleavage. The preliminary toxicity analysis confirmed that the presence of halogen ions in urine resulted in the formation of halogenated products in two types of ECs, albeit with an overall reduction in toxicity. The UV/PAA processes was considered to be an effective and relatively safe approach for the separation of ECs in urine.
Asunto(s)
Compuestos de Bencidrilo , Ácido Peracético , Fenoles , Contaminantes Químicos del Agua , Compuestos de Bencidrilo/química , Contaminantes Químicos del Agua/química , Ácido Peracético/química , Fenoles/química , Rayos Ultravioleta , Radicales Libres/química , Ciprofloxacina/química , Aguas Residuales/química , Orina/químicaRESUMEN
Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.
Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Pollos , Proteína HN , Anticuerpos Antivirales , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/prevención & control , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinariaRESUMEN
PURPOSE: Prostate cancer (PCa) represents a highly heterogeneous disease that requires tools to assess oncologic risk and guide patient management and treatment planning. Current models are based on various clinical and pathologic parameters including Gleason grading, which suffers from a high interobserver variability. In this study, we determine whether objective machine learning (ML)-driven histopathology image analysis would aid us in better risk stratification of PCa. MATERIALS AND METHODS: We propose a deep learning, histopathology image-based risk stratification model that combines clinicopathologic data along with hematoxylin and eosin- and Ki-67-stained histopathology images. We train and test our model, using a five-fold cross-validation strategy, on a data set from 502 treatment-naïve PCa patients who underwent radical prostatectomy (RP) between 2000 and 2012. RESULTS: We used the concordance index as a measure to evaluate the performance of various risk stratification models. Our risk stratification model on the basis of convolutional neural networks demonstrated superior performance compared with Gleason grading and the Cancer of the Prostate Risk Assessment Post-Surgical risk stratification models. Using our model, 3.9% of the low-risk patients were correctly reclassified to be high-risk and 21.3% of the high-risk patients were correctly reclassified as low-risk. CONCLUSION: These findings highlight the importance of ML as an objective tool for histopathology image assessment and patient risk stratification. With further validation on large cohorts, the digital pathology risk classification we propose may be helpful in guiding administration of adjuvant therapy including radiotherapy after RP.
Asunto(s)
Aprendizaje Profundo , Clasificación del Tumor , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Masculino , Medición de Riesgo/métodos , Prostatectomía/métodos , Anciano , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Even though considerable progress has been made to reduce insult, ischemic stroke is still a significant cause of mortality and morbidity in the world, and new therapeutic strategies are urgently needed. In the present study, the magnesium salt of salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) combination as a multicomponent strategy against stroke was evaluated. The synergistic effect of Sa1B and Rg1 was evaluated by Bliss independence analysis on the middle cerebral artery occlusion model. The infarct volume, neuroethology, cerebral structure, and neurocyte number were evaluated by 3,5-triphenyltetrazolium chloride staining, Longa score, Garcia score, hematoxylin-eosin staining, and Nissl staining, respectively. Metabolomics was used to search for potential biomarkers and explore the mechanism of Sa1B/Rg1. First, the superior effects of SalB/Rg1 than SalB or Rg1 at the same dose were evaluated. Compared with SalB ( P â <â 0.001) or Rg1 ( P â <â 0.01), SalB/Rg1 significantly decreased infarct volume through 3,5-triphenyltetrazolium chloride staining and protected the structural integrity of cortex and striatum. The superior effect of SalB/Rg1 on neurological behavior was also detected compared with SalB or Rg1 significantly. Accompanying behavioral improvement, a considerable increase of SalB/Rg1 on neurons detected by Nissl staining was found on the cortex compared with SalB ( P â <â 0.05) or Rg1 ( P â <â 0.01). Second, the synergistic effect between SalB and Rg1 was strictly verified by Bliss independence analysis ( P â <â 0.01) based on infarct volume. Finally, alleviation of cerebral metabolic disorders may be the possible mechanism of SalB/Rg1. Our study provided a multicomponent strategy against ischemic stroke, with not only dose reduction but also improved efficacy relative to single agents.
Asunto(s)
Benzofuranos , Sinergismo Farmacológico , Ginsenósidos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Ginsenósidos/farmacología , Animales , Benzofuranos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ratas , DepsidosRESUMEN
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious plant pathogen that causes leaf blight of rice cultivars. The pathogenic bacteria possess numerous transcriptional regulators to regulate various biological processes, such as pathogenicity in the host plant. Our previous study identified a new master regulator PXO_RS20790 that is involved in pathogenicity for Xoo against the host rice. However, the molecular functions of PXO_RS20790 are still unclear. Here, we demonstrate that transcriptional regulator Sar (PXO_RS20790) regulates multiple secretion systems. The RNA-sequencing analysis, bacterial one-hybrid assay, and electrophoretic mobility shift assay revealed that Sar enables binding of the promoters of the T1SS-related genes, the avirulence gene, raxX, and positively regulates these genes' expression. Meanwhile, we found that Sar positively regulated the T6SS-1 clusters but did not regulate the T6SS-2 clusters. Furthermore, we revealed that only T6SS-2 is involved in interbacterial competition. We also indicated that Sar could bind the promoters of the T3SS regulators, hrpG and hrpX, to activate these two genes' transcription. Our findings revealed that Sar is a crucial regulator of multiple secretion systems and virulence.
Asunto(s)
Oryza , Enfermedades de las Plantas , Xanthomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo III/metabolismo , Xanthomonas/genéticaRESUMEN
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
RESUMEN
Pu'er tea is a Yunnan geographical indication product, and its brand value ranks first in China. At present, qualitative and quantitative methods with low prediction accuracy are used to predict price. In this paper, based on the current situation and industry characteristics, a differential autoregressive integrated moving average model (ARIMA) is used to predict the short-term price. From the perspective of macro and micro, back-propagation neural network model (BP) was established to predict the long-term price based on the weight ranking of 16 factors affecting the price by technique for order preference by similarity to ideal solution method (TOPSIS). The future price is predicted and analyzed, and then based on the empirical results, suggestions are put forward for the industry in terms of reducing production capacity, increasing consumer demand and combining with the publicity and promotion of Internet.
RESUMEN
An organic-inorganic hybrid silver iodobismuthate characteristic of the infrequent [Ag2BiI6L2] cluster (L = I or I3) and with a unique Ag/Bi molar ratio (2/1), namely, [Zn(bipy)3]2Ag2BiI6(I)1.355(I3)1.645 (bipy = 2,2'-bipyridine; 1), was solvothermally synthesized, and structurally, optically, and theoretically studied. Intriguingly, compound 1 exhibited semiconductor behavior with an optical band gap of 2.33 eV, which endowed it with excellent photoelectric and photocatalytic properties. Electronic structure calculations further revealed that the relative separate conduction band (CB) and valence band (VB) in compound 1 may be responsible for the good optical activity. This study also includes the Hirshfeld surface analyses, thermogravimetric measurements and X-ray photoelectron spectroscopy (XPS) characterization.
RESUMEN
In this work, a novel sludge biochar/Zn-Al layered double hydroxide composite (SL) was synthesized in a facile co-precipitation method, and it was used to simultaneously remove benzotriazole (BTA) and lead ion (Pb(II)). Batch adsorption experiments demonstrated that composites with sludge content of 1.0 g (SL-1.0) had a great adsorption performance for BTA and Pb(II). The maximum adsorption capacities of SL-1.0 for BTA and Pb(II) were 239.6 and 226.1 mg g-1, respectively. There was preferential adsorption of BTA in BTA and Pb(II) binary system. The adsorption mechanism analysis indicated that the BTA and Pb(II) adsorption involved electrostatic attraction and chemical bonding with surface functional groups on SL-1.0. Specifically, hydrogen bonding and π-π interaction were mainly ascribed to BTA adsorption, while complexation with surface function groups dominated Pb(II) adsorption. With the advantages of facile synthesis and excellent adsorption capacity, SL-1.0 possesses great potential for simultaneously removing of BTA and Pb(II) from wastewaters.