Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem Lett ; 28(10): 1853-1859, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29650290

RESUMEN

A series of tripeptidic acylsulfonamide inhibitors of HCV NS3 protease were prepared that explored structure-activity relationships (SARs) at the P4 position, and their in vitro and in vivo properties were evaluated. Enhanced potency was observed in a series of P4 ureas; however, the PK profiles of these analogues were less than optimal. In an effort to overcome the PK shortcomings, modifications to the P3-P4 junction were made. This included a strategy in which one of the two urea N-H groups was either N-methylated or replaced with an oxygen atom. The former approach provided a series of regioisomeric N-methylated ureas while the latter gave rise to P4 reverse carbamates, both of which retained potent NS3 inhibitory properties while relying upon an alternative H-bond donor topology. Details of the SARs and PK profiles of these analogues are provided.


Asunto(s)
Antivirales/química , Carbamatos/química , Inhibidores de Proteasas/química , Urea/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Sitios de Unión , Semivida , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Humanos , Enlace de Hidrógeno , Hígado/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacocinética , Inhibidores de Proteasas/farmacología , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
2.
Antimicrob Agents Chemother ; 57(3): 1312-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23274666

RESUMEN

The clinical efficacy of a pegylated form of human lambda 1 interferon (IFN-λ1; also referred to herein as lambda) has been demonstrated in patients chronically infected with hepatitis C virus (HCV) representing genotypes 1 through 4. In these proof-of-concept studies, lambda showed an improved safety profile compared to the pegylated form of alpha interferon (referred to herein as alfa). In the study described in this report, an assessment of the in vitro antiviral activity of type III IFNs toward different HCV replicons revealed that the unpegylated recombinant form of IFN-λ1 (rIFN-λ1) exerted the most robust effect, while rIFN-λ3 exhibited greater activity than rIFN-λ2. More importantly, cross-resistance to rIFN-λ1 was not observed in replicon cell lines known to have reduced susceptibility to investigational direct-acting antiviral (DAA) agents targeting the essential HCV nonstructural protein NS3, NS5A, or NS5B. When combined with either rIFN-α, the NS3 protease inhibitor (NS3 PI) asunaprevir (ASV), the NS5A replication complex inhibitor (NS5A RCI) daclatasvir (DCV), or the NS5B polymerase site I inhibitor (NS5B I) BMS-791325, rIFN-λ1 displayed a mixture of additive and synergistic effects. In three-drug combination studies, inclusion of lambda with ASV and DCV also yielded additive to synergistic effects. In line with these observations, it was demonstrated that a regimen that used a combination of rIFN-λ1 with one or two DAAs was superior to an IFN-free regimen in clearing HCV RNA in genotype 1a cell lines representing wild-type and NS3 protease inhibitor-resistant sequences. Overall, these data support further clinical development of lambda as part of alternative combination treatments with DAAs for patients chronically infected with HCV.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Interleucinas/farmacología , Inhibidores de Proteasas/farmacología , Replicación Viral/efectos de los fármacos , Carbamatos , Línea Celular Tumoral , Sinergismo Farmacológico , Quimioterapia Combinada , Hepacivirus/enzimología , Hepacivirus/genética , Hepacivirus/crecimiento & desarrollo , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Imidazoles/farmacología , Interferón-alfa/farmacología , Interferones , Isoquinolinas/farmacología , Polietilenglicoles/farmacología , Isoformas de Proteínas/farmacología , Pirrolidinas , Proteínas Recombinantes/farmacología , Replicón/efectos de los fármacos , Sulfonamidas/farmacología , Valina/análogos & derivados , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
3.
Antimicrob Agents Chemother ; 56(7): 3670-81, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22508297

RESUMEN

Asunaprevir (BMS-650032) is a potent hepatitis C virus (HCV) NS3 protease inhibitor demonstrating efficacy in alfa interferon-sparing, direct-acting antiviral dual-combination regimens (together with the NS5A replication complex inhibitor daclatasvir) in patients chronically infected with HCV genotype 1b. Here, we describe a comprehensive in vitro genotypic and phenotypic analysis of asunaprevir-associated resistance against genotypes 1a and 1b using HCV replicons and patient samples obtained from clinical studies of short-term asunaprevir monotherapy. During genotype 1a resistance selection using HCV replicons, the primary NS3 protease substitutions identified were R155K, D168G, and I170T, which conferred low- to moderate-level asunaprevir resistance (5- to 21-fold) in transient-transfection susceptibility assays. For genotype 1b, a higher level of asunaprevir-associated resistance was observed at the same selection pressures, ranging from 170- to 400-fold relative to the wild-type control. The primary NS3 protease substitutions identified occurred predominantly at amino acid residue D168 (D168A/G/H/V/Y) and were associated with high-level asunaprevir resistance (16- to 280-fold) and impaired replication capacity. In asunaprevir single-ascending-dose and 3-day multiple-ascending-dose studies in HCV genotype 1a- or 1b-infected patients, the predominant pre-existing NS3 baseline polymorphism was NS3-Q80K. This substitution impacted initial virologic response rates in a single-ascending-dose study, but its effects after multiple doses were more ambiguous. Interestingly, for patient NS3 protease sequences containing Q80 and those containing K80, susceptibilities to asunaprevir were comparable when tested in an enzyme assay. No resistance-associated variants emerged in these clinical studies that significantly impacted susceptibility to asunaprevir. Importantly, asunaprevir-resistant replicons remained susceptible to an NS5A replication complex inhibitor, consistent with a role for asunaprevir in combination therapies.


Asunto(s)
Antivirales/uso terapéutico , Isoquinolinas/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Sulfonamidas/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adolescente , Adulto , Línea Celular Tumoral , Farmacorresistencia Viral/genética , Femenino , Genotipo , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Hepatitis C/virología , Humanos , Masculino , Persona de Mediana Edad , Oligopéptidos/uso terapéutico , Adulto Joven
4.
Antimicrob Agents Chemother ; 56(10): 5387-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22869577

RESUMEN

Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with K(i) values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC(50)s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC(50), 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC(50), >12 µM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC(50)s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients.


Asunto(s)
Hepacivirus/efectos de los fármacos , Hepacivirus/patogenicidad , Isoquinolinas/uso terapéutico , Sulfonamidas/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Línea Celular , Perros , Genotipo , Haplorrinos , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Isoquinolinas/farmacología , Masculino , Ratones , Ratas , Sulfonamidas/farmacología
5.
Antimicrob Agents Chemother ; 56(4): 1838-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22290978

RESUMEN

Hepatitis C virus (HCV) protease inhibitors combined with pegylated alfa interferon-ribavirin have demonstrated improved efficacy compared with pegylated alfa interferon-ribavirin alone for the treatment of chronic hepatitis C. Asunaprevir (BMS-650032), a novel HCV NS3 protease inhibitor in clinical development, was evaluated for safety, antiviral activity, and resistance in four double-blind, placebo-controlled, sequential-panel, single- and multiple-ascending-dose (SAD and MAD) studies in healthy subjects or subjects with chronic HCV genotype 1 infection. In SAD studies, subjects (healthy or with chronic HCV infection) were randomized to receive asunaprevir in dose groups of 10 to 1,200 mg or a placebo. In MAD studies, healthy subjects were randomized to receive asunaprevir in dose groups of 10 to 600 mg twice daily or a placebo for 14 days; subjects with HCV infection received asunaprevir in dose groups of 200 to 600 mg twice daily, or a placebo, for 3 days. Across all four studies, headache and diarrhea were the most frequent adverse events in asunaprevir recipients. Asunaprevir at doses of 200 to 600 mg resulted in rapid HCV RNA decreases from the baseline; maximal mean changes in HCV RNA over time were 2.7 and 3.5 log(10) IU/ml in the SAD and MAD studies, respectively. No enrichment of signature asunaprevir-resistant viral variants was detected. In conclusion, the novel NS3 protease inhibitor asunaprevir, when administered at single or multiple doses of 200 to 600 mg twice daily, is generally well tolerated, achieving rapid and substantial decreases in HCV RNA levels in subjects chronically infected with genotype 1 HCV.


Asunto(s)
Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Isoquinolinas/uso terapéutico , Sulfonamidas/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adulto , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Farmacorresistencia Viral , Electrocardiografía/efectos de los fármacos , Femenino , Hepacivirus/genética , Hepatitis C Crónica/virología , Humanos , Isoquinolinas/administración & dosificación , Isoquinolinas/efectos adversos , Masculino , ARN Viral/efectos de los fármacos , Replicón , Tamaño de la Muestra , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos
6.
ACS Med Chem Lett ; 9(2): 143-148, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29456803

RESUMEN

The design and synthesis of potent, tripeptidic acylsulfonamide inhibitors of HCV NS3 protease that contain a difluoromethyl cyclopropyl amino acid at P1 are described. A cocrystal structure of 18 with a NS3/4A protease complex suggests the presence of a H-bond between the polarized C-H of the CHF2 moiety and the backbone carbonyl of Leu135 of the enzyme. Structure-activity relationship studies indicate that this H-bond enhances enzyme inhibitory potency by 13- and 17-fold compared to the CH3 and CF3 analogues, respectively, providing insight into the deployment of this unique amino acid.

7.
PLoS One ; 11(6): e0155909, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27280728

RESUMEN

A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 µM relative to IC50 values of 28 to 73 µM in HPV-negative cell lines. Treatment with Compound 1 resulted in a cascade of multiple apoptotic events, including selective activation of effector caspases 3 and 7, fragmentation of cellular DNA, and PARP (poly(ADP-ribose) polymerase) cleavage in HPV-positive cells relative to HPV-negative cells. Unregulated proliferation of HPV transformed cells is dependent on the viral oncogenes, E6 and E7. Treatment with Compound 1 resulted in a decrease in HPV E7 protein in Ca Ski cells. However, the timing of this reduction relative to other effects of compound treatment suggests that this was a consequence, rather than a cause, of the apoptotic cascade. Likewise, compound treatment resulted in no obvious effects on the E6- and E7- mediated down regulation of p53 and Rb, or their downstream effectors, p21 or PCNA. Further investigation of apoptotic signals induced by Compound 1 revealed cleavage of Caspase-8 in HPV-positive cells as early as 2 hours post-treatment, suggesting the compound initiates apoptosis through the extrinsic, death receptor-mediated, pathway of cell death. These studies provide proof of concept that cells transformed by oncogenic Papillomaviruses can be selectively induced to undergo apoptosis by compound treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Transformación Celular Viral/efectos de los fármacos , Papillomaviridae/efectos de los fármacos , Infecciones por Papillomavirus/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias del Cuello Uterino/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Femenino , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Proteína de Retinoblastoma/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/virología
8.
J Med Chem ; 59(17): 8042-60, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27564532

RESUMEN

The discovery of a back-up to the hepatitis C virus NS3 protease inhibitor asunaprevir (2) is described. The objective of this work was the identification of a drug with antiviral properties and toxicology parameters similar to 2, but with a preclinical pharmacokinetic (PK) profile that was predictive of once-daily dosing. Critical to this discovery process was the employment of an ex vivo cardiovascular (CV) model which served to identify compounds that, like 2, were free of the CV liabilities that resulted in the discontinuation of BMS-605339 (1) from clinical trials. Structure-activity relationships (SARs) at each of the structural subsites in 2 were explored with substantial improvement in PK through modifications at the P1 site, while potency gains were found with small, but rationally designed structural changes to P4. Additional modifications at P3 were required to optimize the CV profile, and these combined SARs led to the discovery of BMS-890068 (29).


Asunto(s)
Antivirales/química , Hepacivirus/efectos de los fármacos , Isoquinolinas/uso terapéutico , Oligopéptidos/química , Sulfonamidas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/administración & dosificación , Antivirales/farmacocinética , Antivirales/farmacología , Perros , Esquema de Medicación , Farmacorresistencia Viral , Hepacivirus/genética , Macaca fascicularis , Masculino , Modelos Moleculares , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacocinética , Oligopéptidos/farmacología , Conejos , Ratas Sprague-Dawley , Replicón , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
9.
J Med Chem ; 57(5): 1730-52, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24564672

RESUMEN

The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).


Asunto(s)
Antivirales/uso terapéutico , Hepatitis C/tratamiento farmacológico , Isoquinolinas/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Sulfonamidas/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/sangre , Antivirales/química , Perros , Humanos , Isoquinolinas/sangre , Isoquinolinas/química , Modelos Moleculares , Inhibidores de Proteasas/sangre , Inhibidores de Proteasas/química , Conejos , Ratas , Sulfonamidas/sangre , Sulfonamidas/química
10.
J Med Chem ; 57(5): 1708-29, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24555570

RESUMEN

The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.


Asunto(s)
Antivirales/uso terapéutico , Descubrimiento de Drogas , Hepatitis C/tratamiento farmacológico , Isoquinolinas/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Sulfonamidas/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Perros , Evaluación Preclínica de Medicamentos , Humanos , Isoquinolinas/química , Modelos Moleculares , Inhibidores de Proteasas/química , Sulfonamidas/química
11.
Antivir Ther ; 16(5): 705-18, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21817192

RESUMEN

BACKGROUND: To support clinical development of HCV non-structural protein (NS) 3 protease inhibitors (PIs), phenotypic monitoring of patient isolates is a prerequisite for understanding the emergence of resistance. HCV isolates typically fail to replicate in cell culture, necessitating the use of alternative phenotyping methods. METHODS: An NS3 protease chimeric replicon system was developed to monitor the phenotype of clinical isolates. The transfer of NS3 protease domain sequences from HCV-infected patients to the background of genotype (Gt) 1a-H77c, 1b-Con1 and 2a-JFH-1 lab strain replicons adapted to high-level cell culture replication was investigated. RESULTS: NS3 protease sequences derived from HCV Gt 1a or Gt 1b infected patients were transferred into Gt 1a and 1b replicons, respectively. Replication was detected for 20% of Gt 1a and 75% of Gt 1b sequences. Incorporation of known cell culture adaptive change NS3-E176G improved replication of Gt 1b but not of Gt 1a sequences. Transfer of Gt 1a clinical sequences into the Gt 1b background enhanced replication and allowed phenotypic analysis of all sequences. A correlation was observed between clinical isolate sequence polymorphisms and reduced susceptibility to NS3 PI. In mixed populations containing known NS3 PI resistance changes NS3-R155K or D168E/V, sensitivity of resistance detection was ≥ 10%. CONCLUSIONS: An HCV replicon capable of supporting phenotypic characterization of patient-derived HCV NS3 protease sequences was developed. Pre-existence of amino acid changes associated with NS3 PI resistance highlights the need for combination therapies in the treatment of HCV.


Asunto(s)
Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Replicón/genética , Proteínas no Estructurales Virales/genética , Farmacorresistencia Viral/genética , Vectores Genéticos/metabolismo , Genotipo , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Humanos , Proteínas Mutantes Quiméricas/metabolismo , Fenotipo , Plásmidos/metabolismo , Replicón/efectos de los fármacos , Sensibilidad y Especificidad , Proteínas no Estructurales Virales/análisis , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA