Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818801

RESUMEN

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Liberación del Virus , Humanos , Antígeno 2 del Estroma de la Médula Ósea/antagonistas & inhibidores , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , COVID-19/virología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética
2.
iScience ; 26(7): 107056, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37346049

RESUMEN

The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens.

3.
bioRxiv ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33442692

RESUMEN

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrated that SARS-CoV-2 infection causes tetherin downregulation, and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigated the potential viral proteins involved in abrogating tetherin function and found that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles via reduced retrograde recycling and increases tetherin localisation to late endocytic organelles. By removing tetherin from the Coronavirus budding compartments, ORF3a enhances virus release. We also found expression of Spike protein caused a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.

4.
Commun Biol ; 5(1): 666, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790808

RESUMEN

B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.


Asunto(s)
COVID-19 , ARN , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
5.
Front Cell Dev Biol ; 9: 697584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631697

RESUMEN

Modern data analysis methods, such as optimization algorithms or deep learning have been successfully applied to a number of biotechnological and medical questions. For these methods to be efficient, a large number of high-quality and reproducible experiments needs to be conducted, requiring a high degree of automation. Here, we present an open-source hardware and low-cost framework that allows for automatic high-throughput generation of large amounts of cell biology data. Our design consists of an epifluorescent microscope with automated XY stage for moving a multiwell plate containing cells and a perfusion manifold allowing programmed application of up to eight different solutions. Our system is very flexible and can be adapted easily for individual experimental needs. To demonstrate the utility of the system, we have used it to perform high-throughput Ca2+ imaging and large-scale fluorescent labeling experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA