Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 33(30): 12287-99, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884935

RESUMEN

Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers, protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68 interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen-glucose deprivation (OGD). OGD progressively decreased neuronal survival over 48 h in a severity-dependent manner, the majority of cell death occurring after 12 h after OGD. Administration of F-68 for 48 h after OGD rescued neurons from death in a dose-dependent manner. At its optimal concentration (30 µm), F-68 rescued all neurons that would have died after the first hour after OGD. This level of rescue persisted when F-68 administration was delayed 12 h after OGD. F-68 did not alter electrophysiological parameters controlling excitability, NMDA receptor-activated currents, or NMDA-induced increases in cytosolic calcium concentrations. However, F-68 treatment prevented phosphatidylserine externalization, caspase activation, loss of mitochondrial membrane potential, and BAX translocation to mitochondria, indicating that F-68 alters apoptotic mechanisms early in the intrinsic pathway of apoptosis. The profound neuronal rescue provided by F-68 after OGD and the high level of efficacy with delayed administration indicate that Pluronic copolymers may provide a novel, membrane-targeted approach to rescuing neurons after brain ischemia. The ability of membrane-active agents to block apoptosis suggests that membranes or their lipid components play prominent roles in injury-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipocampo/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Polietilenglicoles/farmacología , Glicoles de Propileno/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/fisiología , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Femenino , Feto/citología , Glucosa/metabolismo , Glucosa/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/metabolismo , Neuronas/fisiología , Oxígeno/metabolismo , Oxígeno/farmacología , Técnicas de Placa-Clamp , Embarazo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo
2.
J Neurochem ; 106(1): 45-55, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18346200

RESUMEN

Increase in oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease. There is evidence for involvement of amyloid-beta peptide (Abeta) in mediating the oxidative damage to neurons. Despite yet unknown mechanism, Abeta appears to exert action on the ionotropic glutamate receptors, especially the N-methyl-D-aspartic acid (NMDA) receptor subtypes. In this study, we showed that NMDA and oligomeric Abeta(1-42) could induce reactive oxygen species (ROS) production from cortical neurons through activation of NADPH oxidase. ROS derived from NADPH oxidase led to activation of extracellular signal-regulated kinase 1/2, phosphorylation of cytosolic phospholipase A(2)alpha (cPLA(2)alpha), and arachidonic acid (AA) release. In addition, Abeta(1-42)-induced AA release was inhibited by d(-)-2-amino-5-phosphonopentanoic acid and memantine, two different NMDA receptor antagonists, suggesting action of Abeta through the NMDA receptor. Besides serving as a precursor for eicosanoids, AA is also regarded as a retrograde messenger and plays a role in modulating synaptic plasticity. Other phospholipase A(2) products such as lysophospholipids can perturb membrane phospholipids. These results suggest an oxidative-degradative mechanism for oligomeric Abeta(1-42) to induce ROS production and stimulate AA release through the NMDA receptors. This novel mechanism may contribute to the oxidative stress hypothesis and synaptic failure that underline the pathogenesis of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Ácido Araquidónico/metabolismo , N-Metilaspartato/toxicidad , NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/toxicidad , Fosfolipasas A2 Citosólicas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Células Cultivadas , Corteza Cerebral/citología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , NADPH Oxidasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfolipasas A2 Citosólicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
J Neurosci ; 26(43): 11111-9, 2006 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17065451

RESUMEN

Mitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer's disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A2 (PLA2s), namely the cytosolic and the calcium-independent PLA2s (cPLA2 and iPLA2), are key enzymes mediating oligomeric amyloid-beta peptide (Abeta(1-42))-induced loss of mitochondrial membrane potential and increase in production of reactive oxygen species from mitochondria in astrocytes. Whereas the action of iPLA2 is immediate, the action of cPLA2 requires a lag time of approximately 12-15 min, probably the time needed for initiating signaling pathways for the phosphorylation and translocation of cPLA2 to mitochondria. Western blot analysis indicated the ability of oligomeric Abeta(1-42) to increase phosphorylation of cPLA2 in astrocytes through the NADPH oxidase and mitogen-activated protein kinase pathways. The involvement of PLA2 in Abeta(1-42)-mediated perturbations of mitochondrial function provides new insights to the decline in mitochondrial function, leading to impairment in ATP production and increase in oxidative stress in AD brains.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/enzimología , Mitocondrias/enzimología , Mitocondrias/patología , Fragmentos de Péptidos/metabolismo , Fosfolipasas A/fisiología , Péptidos beta-Amiloides/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Calcio/fisiología , Células Cultivadas , Citosol/enzimología , Mitocondrias/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Fosfolipasas A2 , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Neurosci Lett ; 403(1-2): 157-61, 2006 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-16698180

RESUMEN

The present study investigated the changes in the expression of regulators of G-protein-coupled signaling proteins RGS2, 7 and 8 in gerbil hippocampus to better understand alterations of G-protein-coupled receptors signaling after cerebral ischemia. In situ hybridization revealed a transient, robust early increase in RGS7 mRNA levels in the dentate gyrus after ischemia. RGS8 mRNA expression started to increase at a later time point in the CA3 region but no changes were found for RGS2. Our results show a subtype-, time-, and subregion-specific regulation in mRNA expression of RGS proteins after cerebral ischemia in gerbil hippocampus.


Asunto(s)
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Proteínas RGS/biosíntesis , ARN Mensajero/biosíntesis , Animales , Gerbillinae , Masculino , Proteínas RGS/genética
5.
Mol Neurobiol ; 31(1-3): 135-47, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15953817

RESUMEN

Plant polyphenols are dietary components that exert a variety of biochemical and pharmacological effects. Recently, considerable interest has been focused on polyphenols because of their antioxidant, anti-inflammatory, and antiproliferative activities. Oxidative stress is thought to be a key event in the pathogenesis of cerebral ischemia. Overproduction of reactive oxygen species during ischemia/reperfusion could cause an imbalance between oxidative and antioxidative processes. Reactive oxygen species can damage lipids, proteins, and nucleic acids, thereby inducing apoptosis or necrosis. There is increasing evidence supporting the hypothesis that plant polyphenols can provide protection against neurodegenerative changes associated with cerebral ischemia. This article reviews the neuroprotective effects of plant extracts and their constituents that have been used in animal models of cerebral ischemia. The use of polyphenols as therapeutic agents in stroke has been suggested.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Flavonoides/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Fenoles/administración & dosificación , Animales , Isquemia Encefálica/metabolismo , Flavonoides/aislamiento & purificación , Humanos , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fenoles/aislamiento & purificación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Polifenoles
6.
Neuromolecular Med ; 12(2): 133-48, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19855947

RESUMEN

Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.


Asunto(s)
Sistema Nervioso Central/enzimología , Inflamación/fisiopatología , Fosfolipasas A2/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Apoptosis , Isquemia Encefálica/enzimología , Dominio Catalítico , Citosol/enzimología , Humanos , Inflamación/enzimología , Memoria/fisiología , NADPH Oxidasas/metabolismo , Enfermedades Neurodegenerativas/enzimología , Neuroglía/enzimología , Neuroglía/fisiología , Neuronas/citología , Neuronas/enzimología , Neuronas/fisiología , Fosfolipasas A2/química , Fosfolipasas A2/genética , Fosfolipasas A2/fisiología , Fosfolípidos/metabolismo , Fosforilación , ARN Mensajero/genética , Receptores de N-Metil-D-Aspartato/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
J Neurosci Res ; 82(1): 138-48, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16075466

RESUMEN

Increased oxidative stress has been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In recent years, there has been increasing interest in investigating polyphenols from botanical source for possible neuroprotective effects against neurodegenerative diseases. In this study, we investigated the mechanisms underlying the neuroprotective effects of curcumin, a potent polyphenol antioxidant enriched in tumeric. Global cerebral ischemia was induced in Mongolian gerbils by transient occlusion of the common carotid arteries. Histochemical analysis indicated extensive neuronal death together with increased reactive astrocytes and microglial cells in the hippocampal CA1 area at 4 days after I/R. These ischemic changes were preceded by a rapid increase in lipid peroxidation and followed by decrease in mitochondrial membrane potential, increased cytochrome c release, and subsequently caspase-3 activation and apoptosis. Administration of curcumin by i.p. injections (30 mg/kg body wt) or by supplementation to the AIN76 diet (2.0 g/kg diet) for 2 months significantly attenuated ischemia-induced neuronal death as well as glial activation. Curcumin administration also decreased lipid peroxidation, mitochondrial dysfunction, and the apoptotic indices. The biochemical changes resulting from curcumin also correlated well with its ability to ameliorate the changes in locomotor activity induced by I/R. Bioavailability study indicated a rapid increase in curcumin in plasma and brain within 1 hr after treatment. Together, these findings attribute the neuroprotective effect of curcumin against I/R-induced neuronal damage to its antioxidant capacity in reducing oxidative stress and the signaling cascade leading to apoptotic cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Síntomas Conductuales/prevención & control , Isquemia Encefálica/complicaciones , Curcumina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Análisis de Varianza , Animales , Astrocitos/metabolismo , Astrocitos/patología , Conducta Animal , Síntomas Conductuales/etiología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Isquemia Encefálica/patología , Antígenos CD13/efectos de los fármacos , Caspasa 3 , Caspasas/metabolismo , Recuento de Células/métodos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Gerbillinae , Proteína Ácida Fibrilar de la Glía/metabolismo , Histocitoquímica/métodos , Inmunohistoquímica/métodos , Etiquetado Corte-Fin in Situ/métodos , Indoles , Lectinas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología , Mitocondrias/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA