RESUMEN
Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.
Asunto(s)
Retículo Endoplásmico , Factor 2 Relacionado con NF-E2 , Retículo Endoplásmico/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Drosophila melanogaster , AnimalesRESUMEN
RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of an RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (targets of RNA-binding proteins identified by editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA-editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1, and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.
Asunto(s)
Adenosina Desaminasa/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Técnicas Genéticas , Edición de ARN , Regiones no Traducidas 3' , Animales , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Unión al ARNRESUMEN
Purpose: Upfront radiation therapy consisting of brachytherapy with or without external beam radiation therapy is considered standard of care for patients with endometrial carcinoma who are unable to undergo surgical intervention. This study evaluated the cancer-free survival (CFS), cancer-specific survival (CSS), and overall survival (OS) of patients with endometrial carcinoma managed with definitive-intent radiation therapy. Methods and Materials: This was a single-institution retrospective analysis of medically inoperable patients with biopsy-proven endometrial carcinoma managed with up-front, definitive radiation therapy at UMass Memorial Medical Center between May 2010 and October 2021. A total of 55 cases were included for analysis. Patients were stratified as having low-risk endometrial carcinoma (LREC; uterine-confined grade 1-2 endometrioid adenocarcinoma) or high-risk endometrial carcinoma (HREC; stage III/IV and/or grade 3 endometrioid carcinoma, or any stage serous or clear cell carcinoma or carcinosarcoma). The CFS, CSS, OS, and grade ≥3 toxic effects were reported for patients with LREC and HREC. Results: The median age was 66 years (range, 42-86 years), and the median follow-up was 44 months (range, 4-135 months). Twelve patients (22%) were diagnosed with HREC. Six patients (11%) were treated with high-dose-rate brachytherapy alone and 49 patients (89%) were treated with high-dose-rate brachytherapy and external beam radiation therapy. Twelve patients (22%) were treated with radiation and chemotherapy. The 2-year CFS was 82% for patients with LREC and 80% for patients with HREC (log rank P = .0654). The 2-year CSS was 100% for both LREC and HREC patients. The 2-year OS was 92% for LREC and 80% for HREC (log P = .0064). There were no acute grade ≥3 toxic effects. There were 3 late grade ≥3 toxic effects owing to endometrial bleeding and gastrointestinal adverse effects. Conclusions: For medically inoperable patients with endometrial carcinoma, up-front radiation therapy provided excellent CFS, CSS, and OS. The CSS and OS were higher in patients with LREC than in those with HREC. Toxic effects were limited in both cohorts.
RESUMEN
Autophagy targets cytoplasmic materials for degradation, and influences cell health. Alterations in Atg6/Beclin-1, a key regulator of autophagy, are associated with multiple diseases. While the role of Atg6 in autophagy regulation is heavily studied, the role of Atg6 in organism health and disease progression remains poorly understood. Here, we discover that loss of Atg6 in Drosophila results in various alterations to stress, metabolic and immune signaling pathways. We find that the increased levels of circulating blood cells and tumor-like masses in atg6 mutants vary depending on tissue-specific function of Atg6, with contributions from intestine and hematopoietic cells. These phenotypes are suppressed by decreased function of macrophage and inflammatory response receptors crq and drpr. Thus, these findings provide a basis for understanding how Atg6 systemically regulates cell health within multiple organs, and highlight the importance of Atg6 in inflammation to organismal health.
Asunto(s)
Autofagia , Transducción de Señal , Humanos , Beclina-1/metabolismo , Autofagia/genética , InflamaciónRESUMEN
Autophagy targets cytoplasmic materials for degradation and influences cell health. Organelle contact and trafficking systems provide membranes for autophagosome formation, but how different membrane systems are selected for use during autophagy remains unclear. Here, we report a novel function of the endosomal sorting complex required for transport (ESCRT) in the regulation of endoplasmic reticulum (ER) coat protein complex II (COPII) vesicle formation that influences autophagy. The ESCRT functions in a pathway upstream of Vps13D to influence COPII vesicle transport, ER-Golgi intermediate compartment (ERGIC) assembly, and autophagosome formation. Atg9 functions downstream of the ESCRT to facilitate ERGIC and autophagosome formation. Interestingly, cells lacking either ESCRT or Vps13D functions exhibit dilated ER structures that are similar to cranio-lenticulo-sutural dysplasia patient cells with SEC23A mutations, which encodes a component of COPII vesicles. Our data reveal a novel ESCRT-dependent pathway that influences the ERGIC and autophagosome formation.
Asunto(s)
Autofagosomas , Proteínas de Drosophila , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Proteínas/metabolismoRESUMEN
Defects in autophagy cause problems in metabolism, development, and disease. The autophagic clearance of mitochondria, mitophagy, is impaired by the loss of Vps13D. Here, we discover that Vps13D regulates mitophagy in a pathway that depends on the core autophagy machinery by regulating Atg8a and ubiquitin localization. This process is Pink1 dependent, with loss of pink1 having similar autophagy and mitochondrial defects as loss of vps13d. The role of Pink1 has largely been studied in tandem with Park/Parkin, an E3 ubiquitin ligase that is widely considered to be crucial in Pink1-dependent mitophagy. Surprisingly, we find that loss of park does not exhibit the same autophagy and mitochondrial deficiencies as vps13d and pink1 mutant cells and contributes to mitochondrial clearance through a pathway that is parallel to vps13d. These findings provide a Park-independent pathway for Pink1-regulated mitophagy and help to explain how Vps13D regulates autophagy and mitochondrial morphology and contributes to neurodegenerative diseases.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autofagia/fisiología , Mitocondrias/metabolismo , Ubiquitina/metabolismoRESUMEN
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.