Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Langmuir ; 40(26): 13688-13698, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902198

RESUMEN

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.

2.
Environ Sci Technol ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607320

RESUMEN

Incorporating health cobenefits from coabated air pollution into carbon mitigation policy making is particularly important for developing countries to boost policy efficiency. For sectors that highly depend on electrification for decarbonization, it remains unclear how the increased electricity demand and consequent health impacts from sectoral mitigation policy in one province would change the scale and the regional and sectoral distributions of the overall health impacts in the whole country. This study chooses the banning of new sales of internal combustion engine vehicles in the private vehicle sector in China as a case. The results show that, without carbon neutrality and air pollution control goals in electricity generation, 53% of CO2 reduction and 65% of health benefits from the private vehicle sector would be offset by increased electricity demand. The regional distributions of CO2 reduction and health benefits due to a province-driven ban policy are greatly uneven, as the top five provinces take up over one-third of the total impact in China. Health benefits per ton of carbon reduction (H/C) may vary by up to 8 times across provinces. Finally, the provinces in southeast China and the Sichuan Basin, with their stably high H/C values, are suggested to enact the province-driven ban policy first.

3.
Phys Chem Chem Phys ; 25(40): 27352-27363, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791853

RESUMEN

In this work, the structural and dynamical properties of thermoplastic polyurethane (TPU)/fullerene (C60) nanocomposites are investigated using atomistic molecular dynamics simulations, focusing on the glass transition, thermal expansion, polymer mobility, polymer-C60 interactions, and diffusion behavior of C60. The results show a slight increase in the glass transition temperature (Tg) with increasing C60 weight fraction (wt%), attributed to hindered polymer dynamics, and a remarkable reduction in the coefficient of thermal expansion above Tg. Results of the mean squared displacement and the time decay of bond-reorientation autocorrelation indicate that the mobility of TPU hard segments is more restricted than that of soft segments, owing to the electrostatic attractions and the π-π stacking between isocyanate groups and C60 molecules. Analysis of TPU-C60 interaction energy reveals that the electrostatic interactions are weakened with an increase in the C60 wt%, while the van der Waals contributions become more significant due to the TPU-C60 interfacial characteristics. Further analysis shows that the translational and rotational diffusion of C60 are both increasingly suppressed with the increase of C60 wt%, indicating a violation of Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations, presumably due to the polymer chain-mediated hydrodynamic interactions arising from chain bridges between neighboring C60 particles. This is highlighted by a stronger decoupling of translational-rotational diffusion and a lower ratio of translational-rotational diffusion coefficient (DT/DR) with increasing C60 wt%. This work elucidates an atomistic understanding of the structure and properties of polymer/C60 nanocomposites.

4.
Phys Chem Chem Phys ; 23(38): 21797-21807, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34550123

RESUMEN

Fully understanding the mechanism by which nanoparticles (NPs) strengthen polymer matrices is crucial for fabricating high-performance polymer nanocomposites (PNCs). Herein, coarse-grained molecular dynamics simulations were adopted to explicitly investigate the reinforcing effect of a NP network. Our results revealed that increasing the NP-NP interactions induced the self-assembly of NPs into a three-dimensional (3D) network that reinforced the polymer matrix. The reinforcing mechanism of NP-NP interactions was quite different from that of NP-polymer interactions. The latter promoted the orientation of polymer chains to transfer the external stress, while the former distributed the stress throughout the NP network. This work revealed the mechanism by which the NP network reinforced the polymer matrix at the molecular level and also provided guidelines for developing high performance PNCs via interfacial modification.

5.
Phys Chem Chem Phys ; 22(29): 16760-16771, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32662467

RESUMEN

Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.

6.
Bull Environ Contam Toxicol ; 105(4): 639-644, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32955595

RESUMEN

Arsenic (As) and cadmium (Cd) are common soil pollutants whose opposing geochemical behaviors must be taken into account in the development of cost-effective, environmentally friendly remediation strategies. In this study, a pot experiment with lettuce and a field experiment with wheat were performed to examine the impacts of zeolite, biochar, MnO2, zero-valent iron (ZVI) individually and in binary combinations thereof on As-Cd pollution. The results of the pot experiment showed that biochar, MnO2 and ZVI had good passivation effects on As and Cd when provided individually, but the effects of a combination of 0.2% ZVI/0.5% biochar or 0.2% MnO2/0.5% ZVI were even better. These amendments were further investigated in a field experiment, which confirmed the positive effect of 0.2% MnO2/0.5% ZVI. Therefore, ZVI/biochar and MnO2/ZVI mixtures may offer effective solutions to the remediation of farmland soil contaminated with both As and Cd.


Asunto(s)
Arsénico/química , Cadmio/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/química , Arsénico/análisis , Cadmio/análisis , Carbón Orgánico , Contaminación Ambiental , Granjas , Hierro , Lactuca , Compuestos de Manganeso , Óxidos , Suelo , Contaminantes del Suelo/análisis , Triticum
7.
Phys Chem Chem Phys ; 21(34): 18714-18726, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31424061

RESUMEN

The improvement of mechanical properties of polymer nanocomposites (PNCs) has been studied for many years, with the main focus on the structure of the nanofillers. Much less effort has been devoted to unraveling the factors controlling the structure of the grafted chains. Herein, through coarse-grained molecular-dynamics simulations, we have successfully fabricated an ideal, mechanically-interlocked composite structure composed of end-functionalized chains grafted to the nanoparticle surface forming rings and making the matrix chains thread through these rings. Depending on the details of the grafting, the reinforcement effect can be remarkable, improving the tensile stress of the system significantly up to 700%. Meanwhile, anisotropy of the system's mechanical response is also observed. Furthermore, the influence of the grafted chain distribution on the mechanical properties of the system has been investigated as well. We observe that the mechanical properties of the system are closely related to the total number of the beads in the grafted chains or the synergistic effect between the length and density of the grafted chains leads to no significant difference in the performance of systems. At constant grafting density, the mechanical properties of the systems correlate negatively to the grafted chain length. In general, our study should help to design and fabricate high-performance PNCs with excellent mechanical properties.

8.
Soft Matter ; 14(12): 2379-2390, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29503989

RESUMEN

Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

9.
J Chem Phys ; 149(4): 044105, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068199

RESUMEN

Establishing the Time-Temperature and Frequency-Temperature Superposition Principles (TTSP and FTSP) to describe the mechanical behavior of polymeric materials is always of paramount significance. In this work, by adopting the classic coarse-grained model, we investigate the validity of these superposition principles for a series of networks, such as the pure polymer network, interpenetrating polymer networks composed of stiff and flexible networks (IPNs-SF), interpenetrating polymer networks composed of different cross-linking networks (IPNs-DC), polymer nanocomposites (PNCs), and surface grafted modified PNCs. The study focuses on the three critical mechanical properties such as the stress relaxation, the storage modulus versus the frequency obtained from the dynamic periodic shear deformation, and the uniaxial tensile stress-strain. The glass transition temperature (Tg) is about 0.47 for the simulated polymer network (CL400), and a smooth master curve is obtained for the stress relaxation process by setting the reference temperature Tref = 0.6 via the horizontal shifting process, indicating the validity of TTSP. Furthermore, similar smooth master curves are also achieved for both dynamic periodic shear and uniaxial tensile deformation, which exhibit similar trends and share the identical linear viscoelastic regime in the temperature interval above Tg: 0.55

10.
Phys Chem Chem Phys ; 18(39): 27232-27244, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27711642

RESUMEN

Although numerous research studies have been focused on studying the self-assembled morphologies of block-copolymers (BCPs) and their nanocomposites, little attention has been directed to explore the relation between their ordered structures and the resulting mechanical properties. We adopt coarse-grained molecular dynamics simulation to study the influence of the morphologies on the stress-strain behavior of pure block copolymers and block copolymers filled with uniform or Janus nanoparticles (NPs). At first, we examine the effect of the arrangement (di-block, tri-block, alternating-block) and the components of the pure block copolymers, and by varying the component ratio between A and B blocks, spherical, cylindrical and lamellar phases are all formed, showing that spherical domains bring the largest reinforcing effect. Then by studying BCPs filled with NPs, the Janus NPs induce stronger bond orientation of polymer chains and greater mechanical properties than the uniform NPs, when these two kinds of NPs are both located in the interface region. Meanwhile, some other anisotropic Janus NPs, such as Janus rods and Janus sheets, are incorporated to examine the effect on the morphology and the stress-strain behavior. These findings deepen our understanding of the morphology-mechanics relation of BCPs and their nanocomposites, opening up a vast number of approaches such as designing the arrangement and components of BCPs, positioning uniform or Janus NPs with different shapes and shear flow to tailor their stress-strain performance.

11.
Phys Chem Chem Phys ; 18(36): 25090-25099, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27711653

RESUMEN

Introducing carbon nanotubes or graphene sheets into polymer matrices has received lots of scientific and technological attention. For the first time, we report a new kind of polymer nanocomposite (PNC) by means of employing anisotropic nanoparticles (NPs) as netpoints (referred to as an end-linked system), namely with NPs acting as netpoints to chemically connect the dual end-groups of each polymer chain to form a network. By taking advantage of this strategy, the anisotropic NPs can be uniformly distributed in the polymer matrix, with the NPs being separated via the connected polymer chains. And the separation distance between NPs, the stress-strain behavior and the dynamic hysteresis loss (HL) can be manipulated by varying the temperature and the polymer chain flexibility. Meanwhile, the physically mixed system is investigated by changing the interaction strength between polymer and NPs, and the temperature. It is emphasized that compared to the physically mixed system, the end-linked system which employs carbon nanotubes or graphene as netpoints possesses good thermal stability because of its thermodynamically stable morphology, exhibiting both excellent static and dynamic mechanical properties. These results help us to design and fabricate high performance and multi-functional PNCs filled with carbon nanotubes or graphene, facilitating the potentially large industrial application of these nanomaterials.

12.
Nanotechnology ; 26(29): 291003, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26134132

RESUMEN

By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction ε(np) volume fraction of grapheme φ thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as C60 CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of ε(np) and φ and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > C60 Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which can be greatly improved by the strong interfacial interaction and the large surface area compared to CNT and C60 This also indicates that polymer matrices with high flexibility and mobility of polymer chains tend to be better toughened. It is hoped that this simulation work will provide rational guidance for fabricating high performance of polymer nanocomposites with excellent toughness.

13.
Phys Chem Chem Phys ; 17(35): 22959-68, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26267833

RESUMEN

We adopted molecular dynamics simulation to study the conductive property of nanorod-filled polymer nanocomposites by focusing on the effects of the interfacial interaction, aspect ratio of the fillers, external shear field, filler-filler interaction and temperature. The variation of the percolation threshold is anti N-type with increasing interfacial interaction. It decreases with an increase in the aspect ratio. At an intermediate filler-filler interaction, a minimum percolation threshold appears. The percolation threshold decreases to a plateau with temperature. At low interfacial interaction, the effect of an external shear field on the homogeneous probability is negligible; however, the directional probability increases with shear rate. Moreover, the difference in conductivity probabilities is reduced for different interfacial interactions under shear. Under shear, the decrease or increase of conductivity probability depends on the initial dispersion state. However, the steady-state conductivity is independent of the initial state for different interfacial interactions. In particular, the evolution of the conductivity network structure under shear is investigated. In short, this study may provide rational tuning methods to obtain nanorod-filled polymer nanocomposites with high conductivity.

14.
Phys Chem Chem Phys ; 17(11): 7196-207, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25690511

RESUMEN

Through coarse-grained molecular dynamics simulations, we have studied the effects of grafting density (Σ) and grafted chain length (Lg) on the structural, mechanical and visco-elastic properties of end-grafted nanoparticles (NPs) filled polymer nanocomposites (PNCs). It is found that increasing the grafting density and grafted chain length both enhance the brush/matrix interface thickness and improve the dispersion of NPs, but there seems to exist an optimum grafting density, above which the end-grafted NPs tend to aggregate. The uniaxial stress-strain behavior of PNCs is also examined, showing that the tensile stress is more enhanced by increasing Lg compared to increasing Σ. The tensile modulus as a function of the strain is fitted following our previous work (Soft Matter, 2014, 10, 5099), exhibiting a gradually reduced non-linearity with the increase of Σ and Lg. Meanwhile, by imposing a sinusoidal external shear strain, for the first time we probe the effects of Σ and Lg on the visco-elastic properties such as the storage modulus G', loss modulus G'' and loss factor tan δ of end-grafted NPs filled PNCs. It is shown that the non-linear relation of G' and G'' as a function of shear strain amplitude decreases with the increase of Σ and Lg, which is consistent with experimental observations. We infer that the increased mechanical and reduced non-linear visco-elastic properties are correlated with the enhanced brush/matrix interface and therefore better dispersion of NPs and stronger physical cross-linking. This work may provide some rational means to tune the mechanical and visco-elastic properties of end-grafted NPs filled polymer nanocomposites.

15.
Soft Matter ; 10(44): 8971-84, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25294566

RESUMEN

To systematically study the effect of functionalized chain groups on polymer nanocomposites, we perform our simulation work in the following two ways. In the case of dilute loading of nanoparticles (NPs) with different geometries (spherical, sheet-like, rod-like NPs), we adopt coarse-grained molecular dynamics simulation to study the structural, dynamic and mechanical properties of polymer nanocomposites influenced by the terminal groups of linear polymer chains. We observe that the terminal groups have more probability to be adsorbed onto the surface of NPs with decreasing temperature, chain molecular weight and increasing chain stiffness. For all NPs with different geometries, more terminal groups segregate into the surface of NPs with increase in the interaction energy εf-n between the terminal groups and the NPs. We also notice that the attractive interaction between the terminal groups and the sheet-like NPs induces the appearance of a gradient of translational dynamics of polymer chains, and the relaxation at the chain length scale is evidently different for various adsorbed layers, whereas the segmental relaxation only becomes slightly slower nearby the sheet-like NPs. For both pure and filled systems with spherical NPs, it is found that the stress-strain curves and bond orientations are significantly enhanced with increase in the interaction strength between the terminal groups as well as terminal groups and NPs. In the case of concentrated loading of NPs, we construct the atomistic models of C60, CNT and graphene to accurately account for the "many body effect." We explore the influence of the functionalization position along the chain backbone on the dispersion kinetics, realizing that the end-functionalization is more effective. The end-groups effect on the chain configuration, chain packing and graphene equilibrium dispersibility is examined. The translational and rotational (segmental and terminal relaxation) dynamics influenced by the interactions between the end groups and graphene are probed by tuning εf-n and the volume fraction of graphene ϕ. Moreover, the shift in the glass transition temperature influenced by εf-n and ϕ is quantitatively estimated by fitting the temperature dependence of the relaxation time using the Vogel-Fulcher-Tammann (VFT) equation. This work is hoped to provide a deep understanding of the polymer nanocomposites with functionalized polymer chains.

16.
Soft Matter ; 10(28): 5099-113, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24906702

RESUMEN

By setting up a coarse-grained model of polymer nanocomposites, we monitored the change in the elastic modulus as a function of the strain, derived from the stress-strain behavior by determining uniaxial tension and simple shear of two typical spatial distribution states (aggregation and dispersion) of nanoparticles (NPs). In both these cases, we observed that the elastic modulus decreases non-linearly with the increase of strain and reaches a low plateau at larger strains. This phenomenon is similar to the so-called "Payne effect" for elastomer nanocomposites. Particularly, the modulus of the aggregation case is more sensitive to the imposed strain. By examining the structural parameters, such as the number of neighboring NPs, coordination number of NPs, root-mean-squared average force exerted on the NPs, local strain, chain conformations (bridge, dangle, loop, interface bead and connection bead), and the total interaction energy of NP-polymer and NP-NP, we inferred that the underlying mechanism of the aggregation case is the disintegration of the NP network or clusters formed through direct contact; however, for the dispersion case, the non-linear behavior is attributed to the destruction of the NP network or clusters formed through the bridging of adsorbed polymer segments among the NPs. The former physical network is influenced by NP-NP interaction and NP volume fraction, while the latter is influenced by NP-polymer interaction and NP volume fraction. Lastly, we found that for the dispersion case, further increasing the inter-particle distance or grafting NPs with polymer chains can effectively reduce the non-linear behavior due to the decrease of the physical network density. In general, this simulation work, for the first time, establishes the correlation between the micro-structural evolution and the strain-induced non-linear behavior of polymer nanocomposites, and sheds some light on how to reduce the "Payne effect".


Asunto(s)
Simulación de Dinámica Molecular , Nanocompuestos/química , Nanopartículas/química , Polímeros/química , Módulo de Elasticidad , Estrés Mecánico
17.
Phys Chem Chem Phys ; 16(39): 21372-82, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25179543

RESUMEN

To fully understand the polymer-filler interfacial interaction mechanism, we use a coarse-grained molecular dynamics simulation to mainly investigate the interfacial dynamic properties by tuning the polymer-filler interaction, temperature, chain length, volume fraction of filler, and size and shape of filler. The polymer beads around the filler exhibit an obvious layering behavior and a gradient of polymer dynamics is observed for systems filled with three kinds of fillers (spherical, rod-like and sheet-like). By analyzing the dynamics of the interfacial beads in the first adsorbed layer, we find that the mobility of interfacial beads becomes greater at lower polymer-filler interaction strength and higher temperature. The adsorption/desorption dynamics of interfacial beads decreases with the increase of the chain length, and then becomes nearly unchanged when the chain length exceeds the entanglement molecular weight. It is found that the influence of the different size of nanospheres on the mobility of interfacial beads is just induced by the curvature. However, for systems filled with nanorods and nanosheets, besides the curvature, the force exerted on the polymer beads also plays an important role. For systems filled with three kinds of fillers, the mobility of interfacial beads is the slowest for the nanosheet filled system and only in this case the "glassy layer" exists for strongly attractive interfacial interaction. By comparing the dynamics of the adsorbed polymer beads for three different shapes of filler, it is concluded that it is the total force exerted on the polymer beads by the filler that determines the mobility of the interfacial beads. In short, this work could provide valuable information on the fundamental understanding of polymer-filler interfacial behavior, especially for systems filled with fillers of different shapes.

18.
Phys Chem Chem Phys ; 16(30): 16039-48, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24964005

RESUMEN

A coarse-grained molecular dynamics simulation was used to investigate the stress-strain behavior of nanorod-filled polymer composites. The effects of the interfacial interaction, aspect ratio of fillers, filler functionalization, chemical couplings between the polymer and the filler and the filler loading on the mechanical reinforcement were explored. The results indicate that there exists an optimal nanorod volume fraction for elastomer reinforcement. The strong polymer-nanorod interaction enhances the reinforcement of polymer nanocomposites. Meanwhile, it is found that nanorods with longer length and smaller diameter, and the chemical functionalization of nanorods can help realize the efficient interfacial stress transfer. And excessive chemical couplings between polymers and nanorods are harmful to mechanical properties. An upturn in the modulus at large deformation is observed in the Mooney-Rivlin plot, attributed to the limited chain extensibility. Particularly, the medium polymer-nanorod interfacial strength and low nanorod volume loading will lead to better dispersion of nanorods. It is suggested that the reinforcement mechanism comes from the nanorod alignment and bond orientation, as well as from the limited extensibility of chain bridges at large deformation. In addition, an optimal nanorod volume fraction can also be explained by the strong polymer-nanorod network. Compared to glassy systems, the mechanism for the significantly enhanced reinforcement of rubbery systems is also demonstrated. In short, our simulation study of nanorod-induced mechanical reinforcement will provide a basic understanding of polymer reinforcement.

19.
Phys Chem Chem Phys ; 16(34): 18483-92, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25072998

RESUMEN

Through coarse-grained molecular dynamics simulation, we aim to uncover the rupture mechanism of polymer-nanorod nanocomposites by characterizing the structural and dynamic changes during the tension process. We find that the strain at failure is corresponding to the coalescence of a single void into larger voids, namely the change of the free volume. And the minimum of the Van der Walls (VDWL) energy reflects the maximum mobility of polymer chains and the largest number of voids of polymer nanocomposites. After the failure, the stress gradually decreases with the strain, accompanied by the contract of the highly orientated polymer bundles. In particular, we observe that the nucleation of voids prefers to occur from where the ends of polymer chains are located. We systematically study the effects of the interfacial interaction, temperature, the length and volume fraction of nanorods, chain length, bulk cross-linking density and interfacial chemical bonds on the rupture behavior, such as the stress at failure, the tensile modulus and the rupture energy. The rupture resistance ability increases with the increase of the interfacial interaction, rod length, and bulk cross-linking density. With an increase in the interfacial interaction, it induces the rupture transition from mode A (no bundles) to B (bundles). The transition point of the stress at failure as a function of the temperature roughly corresponds to the glass transition temperature. At longer chain length, a non-zero stress plateau occurs. And excessive chemical bonds between polymers and nanorods are harmful to the rupture property. We find that an optimal volume fraction of nanorods exists for the stress-strain behavior, which can be rationalized by the formation of the strongest polymer-nanorod network, leading to the slowest mobility of nanorods.

20.
Biomed Eng Online ; 12: 12, 2013 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-23394173

RESUMEN

BACKGROUND: The magnetic resonance imaging (MRI) radio frequency (RF) field induced heating on external fixation devices can be very high in the vicinity of device screws. Such induced RF heating is related to device constructs, device placements, as well as the device insertion depth into human subjects. In this study, computational modeling is performed to determine factors associated with such induced heating. METHODS: Numerical modeling, based on the finite-difference time-domain (FDTD) method, is used to evaluate the temperature rises near external device screw tips inside the ASTM phantom for both 1.5-T and 3-T MRI systems. The modeling approach consists of 1) the development of RF coils for 1.5-T and 3-T, 2) the electromagnetic simulations of energy deposition near the screw tips of external fixation devices, and 3) the thermal simulations of temperature rises near the tips of these devices. RESULTS: It is found that changing insertion depth and screw spacing could largely affect the heating of these devices. In 1.5-T MRI system, smaller insertion depth and larger pin spacing will lead to higher temperature rise. However, for 3-T MRI system, the relation is not very clear when insertion depth is larger than 5 cm or when pin spacing became larger than 20 cm. The effect of connection bar material on device heating is also studied and the heating mechanism of the device is analysed. CONCLUSIONS: Numerical simulation is used to study RF heating for external fixation devices in both 1.5-T and 3-T MRI coils. Typically, shallower insertion depth and larger pin spacing with conductive bar lead to higher RF heating. The heating mechanism is explained using induced current along the device and power decay inside ASTM phantom.


Asunto(s)
Fijadores Externos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Dispositivo de Identificación por Radiofrecuencia/métodos , Ondas de Radio , Simulación por Computador , Campos Electromagnéticos , Calor , Humanos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA