Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 1901-1916, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36890720

RESUMEN

Addition of N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is catalyzed by an evolutionarily conserved m6A methyltransferase complex. In the model plant Arabidopsis thaliana, the m6A methyltransferase complex is composed of 2 core methyltransferases, mRNA adenosine methylase (MTA) and MTB, and several accessory subunits such as FK506-BINDING PROTEIN 12 KD INTERACTING PROTEIN 37KD (FIP37), VIRILIZER (VIR), and HAKAI. It is yet largely unknown whether these accessory subunits influence the functions of MTA and MTB. Herein, I reveal that FIP37 and VIR are indispensable for stabilizing the methyltransferases MTA and MTB, thus functioning as key subunits to maintain the functionality of the m6A methyltransferase complex. Furthermore, VIR affects FIP37 and HAKAI protein accumulation, while MTA and MTB mutually influence each other. In contrast, HAKAI has little effect on protein abundance or localization of MTA, MTB, and FIP37. These findings uncover unique functional interdependence at the post-translational level among individual components in the Arabidopsis m6A methyltransferase complex, suggesting that maintenance of protein homeostasis among various subunits of the m6A methyltransferase complex is essential for maintaining the protein stoichiometry required for the proper function of the m6A methyltransferase complex in m6A deposition in plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , Adenosina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(42): e2310177120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816061

RESUMEN

Centromere repositioning refers to a de novo centromere formation at another chromosomal position without sequence rearrangement. This phenomenon was frequently encountered in both mammalian and plant species and has been implicated in genome evolution and speciation. To understand the dynamic of centromeres on soybean genome, we performed the pan-centromere analysis using CENH3-ChIP-seq data from 27 soybean accessions, including 3 wild soybeans, 9 landraces, and 15 cultivars. Building upon the previous discovery of three centromere satellites in soybean, we have identified two additional centromere satellites that specifically associate with chromosome 1. These satellites reveal significant rearrangements in the centromere structures of chromosome 1 across different accessions, consequently impacting the localization of CENH3. By comparative analysis, we reported a high frequency of centromere repositioning on 14 out of 20 chromosomes. Most newly emerging centromeres formed in close proximity to the native centromeres and some newly emerging centromeres were apparently shared in distantly related accessions, suggesting their emergence is independent. Furthermore, we crossed two accessions with mismatched centromeres to investigate how centromere positions would be influenced in hybrid genetic backgrounds. We found that a significant proportion of centromeres in the S9 generation undergo changes in size and position compared to their parental counterparts. Centromeres preferred to locate at satellites to maintain a stable state, highlighting a significant role of centromere satellites in centromere organization. Taken together, these results revealed extensive centromere repositioning in soybean genome and highlighted how important centromere satellites are in constraining centromere positions and supporting centromere function.


Asunto(s)
Fabaceae , Glycine max , Centrómero/genética , Fabaceae/genética , Glycine max/genética
3.
Plant Cell ; 34(2): 818-833, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850922

RESUMEN

Plants have evolved sophisticated mechanisms to ensure flowering in favorable conditions for reproductive success. In the model plant Arabidopsis thaliana, FLOWERING LOCUS C (FLC) acts as a central repressor of flowering and the major determinant for winter cold requirement for flowering. FLC is activated in winter annuals by the FRIGIDA (FRI) activator complex containing FRI, FLC EXPRESSOR (FLX), and FLX-LIKE 4 (FLX4), among which FLX and FLX4 are also essential for establishing basal FLC expression in summer annuals. Here we show that a plant RNA polymerase II C-terminal domain phosphatase, C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), interacts with and dephosphorylates FLX4 through their scaffold protein FLX to inhibit flowering. CPL3-mediated dephosphorylation of FLX4 serves as a key molecular switch that enables binding of dephosphorylated FLX4 to the FLC locus to promote FLC expression, thus repressing flowering in both winter and summer annuals of Arabidopsis. Our findings reveal a molecular switch underlying the activation of FLC for flowering time control.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Proteínas de Dominio MADS , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Nicotiana/genética
4.
Plant J ; 116(5): 1234-1247, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565662

RESUMEN

Success in plant reproduction is highly dependent on the correct timing of the floral transition, which is tightly regulated by the flowering pathways. In the model plant Arabidopsis thaliana, the central flowering repressor FLOWERING LOCUS C (FLC) is precisely regulated by multiple flowering time regulators in the vernalization pathway and autonomous pathway, including FPA. Here we report that Arabidopsis MEDIATOR SUBUNIT 8 (MED8) promotes floral transition in Arabidopsis by recruiting FPA to the FLC locus to repress FLC expression. Loss of MED8 function leads to a significant late-flowering phenotype due to increased FLC expression. We further show that MED8 directly interacts with FPA in the nucleus and recruits FPA to the FLC locus. Moreover, MED8 is indispensable for FPA's function in controlling flowering time and regulating FLC expression. Our study thus reveals a flowering mechanism by which the Mediator subunit MED8 represses FLC expression by facilitating the binding of FPA to the FLC locus to ensure appropriate timing of flowering for reproductive success.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
Plant Physiol ; 191(3): 2045-2063, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36627133

RESUMEN

N 6-methyladenosine (m6A) modification on messenger RNAs (mRNAs) is deposited by evolutionarily conserved methyltransferases (writers). How individual m6A writers sculpt the overall landscape of the m6A methylome and the resulting biological impact in multicellular organisms remains unknown. Here, we systematically surveyed the quantitative m6A methylomes at single-nucleotide resolution and their corresponding transcriptomes in Arabidopsis (Arabidopsis thaliana) bearing respective impaired m6A writers. The m6A sites associated with the five Arabidopsis writers were located mostly within 3' untranslated regions with peaks at around 100 bp downstream of stop codons. m6A predominantly promoted the usage of distal poly(A) sites but had little effect on RNA splicing. Notably, impaired m6A writers resulted in hypomethylation and downregulation of transcripts encoding ribosomal proteins, indicating a possible correlation between m6A and protein translation. Besides the common effects on mRNA metabolism and biological functions uniquely exerted by different Arabidopsis m6A writers compared with their counterparts in human cell lines, our analyses also revealed the functional specificity of individual Arabidopsis m6A writers in plant development and response to stresses. Our findings thus reveal insights into the biological roles of various Arabidopsis m6A writers and their cognate counterparts in other multicellular m6A methyltransferase complexes.


Asunto(s)
Arabidopsis , Humanos , Metilación , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/genética , Adenosina/metabolismo , ARN/metabolismo
6.
Nature ; 551(7678): 124-128, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29072296

RESUMEN

Epigenetic modifications, including chromatin modifications and DNA methylation, have a central role in the regulation of gene expression in plants and animals. The transmission of epigenetic marks is crucial for certain genes to retain cell lineage-specific expression patterns and maintain cell fate. However, the marks that have accumulated at regulatory loci during growth and development or in response to environmental stimuli need to be deleted in gametes or embryos, particularly in organisms such as plants that do not set aside a germ line, to ensure the proper development of offspring. In Arabidopsis thaliana, prolonged exposure to cold temperatures (winter cold), in a process known as vernalization, triggers the mitotically stable epigenetic silencing of the potent floral repressor FLOWERING LOCUS C (FLC), and renders plants competent to flower in the spring; however, this silencing is reset during each generation. Here we show that the seed-specific transcription factor LEAFY COTYLEDON1 (LEC1) promotes the initial establishment of an active chromatin state at FLC and activates its expression de novo in the pro-embryo, thus reversing the silenced state inherited from gametes. This active chromatin state is passed on from the pro-embryo to post-embryonic life, and leads to transmission of the embryonic memory of FLC activation to post-embryonic stages. Our findings reveal a mechanism for the reprogramming of embryonic chromatin states in plants, and provide insights into the epigenetic memory of embryonic active gene expression in post-embryonic phases, through which an embryonic factor acts to 'control' post-embryonic development processes that are distinct from embryogenesis in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Frío , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Estaciones del Año , Semillas/embriología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
7.
Biomed Chromatogr ; 37(12): e5742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37674471

RESUMEN

Achyranthes bidentata has been found to possess beneficial effects against osteoporosis, but there is still a lack of comprehensive studies on its anti-osteoporotic compounds. Therefore, in this study, we established a zebrafish osteoporosis model to evaluate the anti-osteoporotic effect of different fractions of raw and salt-processed A. bidentata. Among these fractions, the dichloromethane fraction showed the most promising anti-osteoporotic effect. To further investigate the active compounds responsible for the anti-osteoporosis effects, we prepared and analyzed the dichloromethane fraction of 10 batches of raw and salt-processed A. bidentata using liquid chromatography-mass spectrometry. As a result, we tentatively identified 19 compounds, including 11 saponins, three phenolic amides, three unsaturated fatty acids and two other compounds. To further narrow down the potential active compounds, we employed both orthogonal partial least squares discriminant analysis and gray relationship analysis. Through these analyses, we were able to identify eight compounds that showed a high correlation with the anti-osteoporosis effects of the dichloromethane fraction. Furthermore, we validated the anti-osteoporotic effects of ß-ecdysterone, wogonin, ginsenoside Ro, oleanolic acid, linoleic acid and palmitic acid using the zebrafish model. These compounds demonstrated significant anti-osteoporotic effects, further supporting their potential as active compounds in A. bidentata.


Asunto(s)
Achyranthes , Osteoporosis , Animales , Pez Cebra , Achyranthes/química , Cloruro de Metileno , Osteoporosis/tratamiento farmacológico , Cloruro de Sodio , Cromatografía Liquida , Espectrometría de Masas
8.
Molecules ; 28(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067432

RESUMEN

Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.


Asunto(s)
Diterpenos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Fosfatidilinositol 3-Quinasas , Proliferación Celular , Línea Celular Tumoral , Diterpenos/farmacología , Apoptosis , Mamíferos
9.
J Cell Mol Med ; 26(6): 1799-1805, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615661

RESUMEN

Circular RNAs play essential roles in the development of various human diseases. However, how circRNAs are involved in diabetic nephropathy (DN) are not fully understood. Our study aimed to investigate the effects of circRNA circEIF4G2 on DN. Experiments were performed in the db/db mouse model of type 2 diabetes and NRK-52E cells. We found that circEIF4G2 was significantly up-regulated in the kidneys of db/db mice and NRK-52E cells stimulated by high glucose. circEIF4G2 knockdown inhibited the expressions of TGF-ß1, Collagen I and Fibronectin in high glucose-stimulated NRK-52E cells, which could be rescued by miR-218 inhibitor. Knockdown of SERBP1 reduced the expression of TGF-ß1, Collagen I and Fibronectin in HG-stimulated NRK-52E cells. In summary, our findings suggested that circEIF4G2 promotes renal tubular epithelial cell fibrosis via the miR-218/SERBP1 pathway, presenting a novel insight for DN treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , MicroARNs , Animales , Colágeno Tipo I/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Femenino , Fibronectinas/genética , Fibrosis , Glucosa/toxicidad , Humanos , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Factor de Crecimiento Transformador beta1/metabolismo
10.
Plant J ; 108(6): 1704-1720, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634158

RESUMEN

Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.


Asunto(s)
Endospermo/crecimiento & desarrollo , Proteínas de Almacenamiento de Semillas/genética , Factores de Transcripción/genética , Triticum/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genoma de Planta , Regiones Promotoras Genéticas , Triticum/crecimiento & desarrollo
11.
Plant Biotechnol J ; 19(9): 1863-1877, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33949074

RESUMEN

Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.


Asunto(s)
Factores de Transcripción , Triticum , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
12.
Plant Biotechnol J ; 19(5): 992-1007, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33305445

RESUMEN

The synthesis of seed storage protein (SSP) is mainly regulated at the transcriptional level. However, few transcriptional regulators of SSP synthesis have been characterized in common wheat (Triticum aestivum) owing to the complex genome. As the A genome donor of common wheat, Triticum urartu could be an elite model in wheat research considering its simple genome. Here, a novel NAC family transcription factor TuSPR from T. urartu was found preferentially expressed in developing endosperm during grain-filling stages. In common wheat transgenically overexpressing TuSPR, the content of total SSPs was reduced by c. 15.97% attributed to the transcription declines of SSP genes. Both in vitro and in vivo assays showed that TuSPR bound to the cis-element 5'-CANNTG-3' distributed in SSP gene promoters and suppressed the transcription. The homolog in common wheat TaSPR shared a conserved function with TuSPR on SSP synthesis suppression. The knock-down of TaSPR in common wheat resulted in 7.07%-20.34% increases in the total SSPs. Both TuSPR and TaSPR could be superior targets in genetic engineering to manipulate SSP content in wheat, and this work undoubtedly expands our knowledge of SSP gene regulation.


Asunto(s)
Factores de Transcripción , Triticum , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas , Resonancia por Plasmón de Superficie , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo
13.
Plant Physiol ; 184(3): 1469-1481, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900977

RESUMEN

Orchids (members of the Orchidaceae family) possess unique flower morphology and adaptive reproduction strategies. Although the mechanisms underlying their perianth development have been intensively studied, the molecular basis of reproductive organ development in orchids remains largely unknown. Here, we report the identification and functional characterization of two AGAMOUS (AG)-like MADS-box genes, Dendrobium 'Orchid' AG1 (DOAG1) and DOAG2, which are putative C- and D-class genes, respectively, from the orchid Dendrobium 'Chao Praya Smile'. Both DOAG1 and DOAG2 are highly expressed in the reproductive organ, known as the column, compared to perianth organs, while DOAG2 expression gradually increases in pace with pollination-induced ovule development and is localized in ovule primordia. Ectopic expression of DOAG1, but not DOAG2, rescues floral defects in the Arabidopsis (Arabidopsis thaliana) ag-4 mutant, including reiteration of stamenoid perianth organs in inner whorls and complete loss of carpels. Downregulation of DOAG1 and DOAG2 in orchids by artificial microRNA interference using l-Met sulfoximine selection-based gene transformation systems shows that both genes are essential for specifying reproductive organ identity, yet they, exert different roles in mediating floral meristem determinacy and ovule development, respectively, in Dendrobium spp. orchids. Notably, knockdown of DOAG1 and DOAG2 also affects perianth organ development in orchids. Our findings suggest that DOAG1 and DOAG2 not only act as evolutionarily conserved C- and D-class genes, respectively, in determining reproductive organ identity, but also play hitherto unknown roles in mediating perianth organ development in orchids.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Dendrobium/crecimiento & desarrollo , Dendrobium/genética , Flores/crecimiento & desarrollo , Flores/genética , Proteínas de Dominio MADS/metabolismo , Desarrollo de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
14.
Emerg Infect Dis ; 26(10): 2424-2428, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946719

RESUMEN

A rare case of Francisella hispaniensis infection associated with seawater exposure occurred in a deep-sea diving fisherman in Zhejiang, China. He had skin and soft tissue infection that progressed to bacteremia and multiple organ failure. Moxifloxacin treatment cleared the infections, but the patient suffered a sequela of heart damage.


Asunto(s)
Francisella , Insuficiencia Multiorgánica , China , Humanos , Masculino , Insuficiencia Multiorgánica/etiología , Agua de Mar
15.
New Phytol ; 226(5): 1384-1398, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31955424

RESUMEN

Starch in wheat grain provides humans with carbohydrates and influences the quality of wheaten food. However, no transcriptional regulator of starch synthesis has been identified first in common wheat (Triticum aestivum) due to the complex genome. Here, a novel basic leucine zipper (bZIP) family transcription factor TubZIP28 was found to be preferentially expressed in the endosperm throughout grain-filling stages in Triticum urartu, the A genome donor of common wheat. When TubZIP28 was overexpressed in common wheat, the total starch content increased by c. 4%, which contributed to c. 5% increase in the thousand kernel weight. The grain weight per plant of overexpression wheat was also elevated by c. 9%. Both in vitro and in vivo assays showed that TubZIP28 bound to the promoter of cytosolic AGPase and enhanced both the transcription and activity of the latter. Knockout of the homologue TabZIP28 in common wheat resulted in declines of both the transcription and activity of cytosolic AGPase in developing endosperms and c. 4% reduction of the total starch in mature grains. To the best of our knowledge, TubZIP28 and TabZIP28 are transcriptional activators of starch synthesis first identified in wheat, and they could be superior targets to improve the starch content and yield potential of wheat.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Triticum , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Plantas/genética , Almidón , Factores de Transcripción/genética , Triticum/genética
16.
J Integr Plant Biol ; 62(1): 118-131, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31785071

RESUMEN

In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.


Asunto(s)
Arabidopsis/metabolismo , Flores/fisiología , Giberelinas/metabolismo , Transducción de Señal , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo
17.
J Cell Physiol ; 234(10): 18492-18503, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927260

RESUMEN

Diabetic nephropathy (DN) is an important factor leading to end-stage kidney disease that affects diabetes mellitus patients globally. Our previous transcriptome sequencing has identified a large group of differentially expressed long noncoding RNA (lncRNA) in early development of DN. On basis of this, we aimed to investigate the function of lncRNA NONHSAG053901 in DN pathogenesis. In this study, we revealed that the expression of NONHSAG053901 was drastically elevated in both DN mouse model and mesangial cells (MCs). It was found that overexpression of NONHSAG053901 remarkably promoted inflammation, fibrosis and proliferation in MCs. Consistently, further investigations suggested that the stimulation of NONHSAG053901 on proinflammatory cytokines via direct binding to early growth response protein 1 (Egr-1). Interaction between Egr-1 and transforming growth factor ß (TGF-ß) could augment TGF-ß function in DN inflammation. Furthermore, the effects of NONHSAG053901 on stimulation of proinflammatory cytokines were abolished by knockdown of Egr-1. These results together suggested that NONHSAG053901 promoted proinflammatory cytokines via stimulating Egr-1/TGF-ß mediated renal inflammation.


Asunto(s)
Nefropatías Diabéticas/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Inflamación/genética , Inflamación/patología , Riñón/patología , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proliferación Celular/genética , Citocinas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , Unión Proteica/genética , ARN Largo no Codificante/genética , Estreptozocina
18.
J Cell Physiol ; 234(7): 10640-10645, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30536533

RESUMEN

Asymmetric dimethylarginine (ADMA) plays a vital role in the regulation of insulin sensitivity and has been shown as a potential marker for various disease, including type 2 diabetes mellitus (DM2). However, the correlation between ADMA and impaired glucose tolerance (IGT) and obesity has not been studied. A total of 195 subjects were involved in our study. The characteristics of the subjects in the study cohort were measured and analyzed. We found that the serum ADMA and C-reactive protein levels were significantly increased in IGT and diabetic patients, whereas the levels of lipoprotein A and adiponectin were decreased, especially in diabetic patients with obesity. The serum ADMA level was positively correlated to a homeostatic model assessment for insulin resistance, and multivariate regression analysis further indicated that ADMA was an independent factor for DM patients with obesity. Our study expands the understanding of the complicated relationship between obesity, insulin resistance, IGT, and ADMA. In addition, we demonstrated that the serum ADMA level could serve as a diagnositic biomarker of the early signs for IGT patients with obesity.


Asunto(s)
Arginina/análogos & derivados , Diabetes Mellitus Tipo 2/sangre , Intolerancia a la Glucosa/sangre , Obesidad/sangre , Anciano , Arginina/sangre , Biomarcadores/sangre , Glucemia , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Femenino , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/patología
19.
J Cell Physiol ; 234(7): 11200-11207, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30515796

RESUMEN

Accumulating evidence has indicated the significant roles of long noncoding RNAs (lncRNAs) in the pathophysiology of diabetic nephropathy (DN). LncRNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to exert a key role in the progression of several diseases including diabetes. However, the role of NEAT1 in the regulation of DP progression remains barely known. Therefore, our study aimed to investigate the role of NEAT1 in a streptozotocin-induced diabetes model (DM) of rats and glucose-induced mouse mesangial cell models. Currently, we found that NEAT1 was greatly upregulated in DM rats and glucose-induced mice mesangial cells, in which a high activation of Akt/mTOR signaling was also observed. Then, it was shown that knockdown of NETA1 was able to reduce renal injury in DM rats obviously. In addition, cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay were carried out and we observed downregulation of NEAT1 significantly inhibited mesangial cell proliferation. Meanwhile, extracellular matrix proteins and messenger RNA (transforming growth factor ß1, fibronectin, and collagen IV) expression was dramatically restrained by silencing of NEAT1 in the high glucose-induced mesangial cells. Finally, knockdown of NEAT1 greatly reduced the expression of the phosphorylation of Akt and mammalian target of rapamycin (mTOR) in vitro. These findings revealed that the decrease of NEAT1 repressed the proliferation and fibrosis in DN via activating the Akt/mTOR signaling pathway, which might represent a novel pathological mechanism of DN progression.


Asunto(s)
Nefropatías Diabéticas/patología , Fibrosis/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Proliferación Celular/genética , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/genética , Fibrosis/genética , Masculino , Células Mesangiales/metabolismo , Ratones , Ratas
20.
J Cell Biochem ; 120(5): 7474-7481, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30506883

RESUMEN

Insulin resistance is associated with impaired glucose uptake and altered protein kinase B (Akt) signaling. Previous studies have suggested asymmetric dimethylarginine (ADMA) and inflammation are two distinguish factors that correlate with insulin resistance (IR). How ADMA and inflammation factors interact and synchronize in the regulation of IR in liver remain to be elucidated. In this study, we systematically investigated whether ADMA is involved in IR using primary hepatocytes, if yes, by via which molecular mechanism. Our results demonstrated that ADMA inhibits insulin sensitivity in a concentration-dependent manner by activating inflammation factors tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 in primary hepatocytes. Further analysis revealed that mitogen-activated protein kinase (MAPK) signaling pathway act downstream of ADMA and inflammation factors, and inhibition of MAPK pathway rescued the IR. Furthermore, metformin effects has been found which could reverse ADMA-induced IR by suppressing MAPK signaling pathway. To our knowledge, we, for the first time, unveiled the complicated regulatory network and interactions among ADMA, inflammation, and MAPK signaling pathway, which advanced current research on the development and regulation of IR in liver. This study also certainly provided novel insights on comprehensive diagonistics roles of ADMA as a potential biomarker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA