Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(15): e111951, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334492

RESUMEN

BRCA1 expression is highly regulated to prevent genomic instability and tumorigenesis. Dysregulation of BRCA1 expression correlates closely with sporadic basal-like breast cancer and ovarian cancer. The most significant characteristic of BRCA1 regulation is periodic expression fluctuation throughout the cell cycle, which is important for the orderly progression of different DNA repair pathways throughout the various cell cycle phases and for further genomic stability. However, the underlying mechanism driving this phenomenon is poorly understood. Here, we demonstrate that RBM10-mediated RNA alternative splicing coupled to nonsense-mediated mRNA decay (AS-NMD), rather than transcription, determines the periodic fluctuations in G1/S-phase BRCA1 expression. Furthermore, AS-NMD broadly regulates the expression of period genes, such as DNA replication-related genes, in an uneconomical but more rapid manner. In summary, we identified an unexpected posttranscriptional mechanism distinct from canonical processes that mediates the rapid regulation of BRCA1 as well as other period gene expression during the G1/S-phase transition and provided insights into potential targets for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Degradación de ARNm Mediada por Codón sin Sentido , Humanos , Femenino , Empalme Alternativo , Empalme del ARN , Neoplasias de la Mama/genética , Inestabilidad Genómica , Proteína BRCA1/genética , Proteínas de Unión al ARN/genética
2.
Mol Cell ; 75(6): 1299-1314.e6, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353207

RESUMEN

MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ácido Anhídrido Hidrolasas/genética , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Proteína Homóloga de MRE11/genética , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Estabilidad Proteica , Células Sf9 , Spodoptera
3.
Nucleic Acids Res ; 46(2): 689-703, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29190394

RESUMEN

P53-binding protein 1 (53BP1) plays critical roles in DNA double strand break (DSB) repair by promoting non-homologous end joining (NHEJ), and loss of 53BP1 abolishes PARPi sensitivity in BRCA1-deficient cells by restoring homologous recombination (HR). 53BP1 is one of the proteins initially recruited to sites of DSBs via recognition of H4K20me2 through the Tudor-UDR domain and H2AK15ub through the UDR motif. Although extensive studies have been conducted, it remains unclear how the post-translational modification of 53BP1 affects DSB repair pathway choice. Here, we identified 53BP1 as an acetylated protein and determined that acetylation of 53BP1 inhibit NHEJ and promote HR by negatively regulating 53BP1 recruitment to DSBs. Mechanistically, CBP-mediated acetylation of K1626/1628 in the UDR motif disrupted the interaction between 53BP1 and nucleosomes, subsequently blocking the recruitment of 53BP1 and its downstream factors PTIP and RIF1 to DSBs. Hyperacetylation of 53BP1, similar to depletion of 53BP1, restored PARPi resistance in BRCA1-deficient cells. Interestingly, 53BP1 acetylation was tightly regulated by HDAC2 to maintain balance between the HR and NHEJ pathways. Together, our results demonstrate that the acetylation status of 53BP1 plays a key role in its recruitment to DSBs and reveal how specific 53BP1 modification modulates the choice of DNA repair pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Acetilación , Secuencia de Aminoácidos , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Dominio Tudor , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética
4.
Cell Rep ; 20(9): 1997-2009, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854354

RESUMEN

The RPA complex can integrate multiple stress signals into diverse responses by activating distinct DNA repair pathways. However, it remains unclear how RPA1 elects to activate a specific repair pathway during different types of DNA damage. Here, we report that PCAF/GCN5-mediated K163 acetylation of RPA1 is crucial for nucleotide excision repair (NER) but is dispensable for other DNA repair pathways. Mechanistically, we demonstrate that the acetylation of RPA1 is critical for the steady accumulation of XPA at damaged DNA sites and preferentially activates the NER pathway. DNA-PK phosphorylates and activates PCAF upon UV damage and consequently promotes the acetylation of RPA1. Moreover, the acetylation of RPA1 is tightly regulated by HDAC6 and SIRT1. Together, our results demonstrate that the K163 acetylation of RPA1 plays a key role in the repair of UV-induced DNA damage and reveal how the specific RPA1 modification modulates the choice of distinct DNA repair pathways.


Asunto(s)
Reparación del ADN , Proteína de Replicación A/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilasa 6/metabolismo , Humanos , Lisina/metabolismo , Unión Proteica/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Sirtuina 1/metabolismo , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA