Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 35(1): 239-259, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36069643

RESUMEN

Abscisic acid (ABA)-activated inward Ca2+-permeable channels in the plasma membrane (PM) of guard cells are required for the initiation and regulation of ABA-specific cytosolic Ca2+ signaling and stomatal closure in plants. But the identities of the PM Ca2+ channels are still unknown. We hypothesized that the ABA-activated Ca2+ channels consist of multiple CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC) proteins from the CNGC family, which is known as a Ca2+-permeable channel family in Arabidopsis (Arabidopsis thaliana). In this research, we observed high expression of multiple CNGC genes in Arabidopsis guard cells, namely CNGC5, CNGC6, CNGC9, and CNGC12. The T-DNA insertional loss-of-function quadruple mutant cngc5-1 cngc6-2 cngc9-1 cngc12-1 (hereafter c5/6/9/12) showed a strong ABA-insensitive phenotype of stomatal closure. Further analysis revealed that ABA-activated Ca2+ channel currents were impaired, and ABA-specific cytosolic Ca2+ oscillation patterns were disrupted in c5/6/9/12 guard cells compared with in wild-type guard cells. All ABA-related phenotypes of the c5/6/9/12 mutant were successfully rescued by the expression of a single gene out of the four CNGCs under the respective native promoter. Thus, our findings reveal a type of ABA-activated PM Ca2+ channel comprising multiple CNGCs, which is essential for ABA-specific Ca2+ signaling of guard cells and ABA-induced stomatal closure in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Mutación/genética , Nucleótidos Cíclicos/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal
2.
Nat Chem Biol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816645

RESUMEN

RNA-based fluorogenic modules have revolutionized the spatiotemporal localization of RNA molecules. Recently, a fluorophore named 5-((Z)-4-((2-hydroxyethyl)(methyl)amino)benzylidene)-3-methyl-2-((E)-styryl)-3,5-dihydro-4H-imidazol-4-one (NBSI), emitting in red spectrum, and its cognate aptamer named Clivia were identified, exhibiting a large Stokes shift. To explore the underlying molecular basis of this unique RNA-fluorophore complex, we determined the tertiary structure of Clivia-NBSI. The overall structure uses a monomeric, non-G-quadruplex compact coaxial architecture, with NBSI sandwiched at the core junction. Structure-based fluorophore recognition pattern analysis, combined with fluorescence assays, enables the orthogonal use of Clivia-NBSI and other fluorogenic aptamers, paving the way for both dual-emission fluorescence and bioluminescence imaging of RNA molecules within living cells. Furthermore, on the basis of the structure-based substitution assay, we developed a multivalent Clivia fluorogenic aptamer containing multiple minimal NBSI-binding modules. This innovative design notably enhances the recognition sensitivity of fluorophores both in vitro and in vivo, shedding light on future efficient applications in various biomedical and research contexts.

3.
Nucleic Acids Res ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769061

RESUMEN

Riboswitches are conserved regulatory RNA elements participating in various metabolic pathways. Recently, a novel RNA motif known as the folE RNA motif was discovered upstream of folE genes. It specifically senses tetrahydrofolate (THF) and is therefore termed THF-II riboswitch. To unravel the ligand recognition mechanism of this newly discovered riboswitch and decipher the underlying principles governing its tertiary folding, we determined both the free-form and bound-form THF-II riboswitch in the wild-type sequences. Combining structural information and isothermal titration calorimetry (ITC) binding assays on structure-based mutants, we successfully elucidated the significant long-range interactions governing the function of THF-II riboswitch and identified additional compounds, including alternative natural metabolites and potential lead compounds for drug discovery, that interact with THF-II riboswitch. Our structural research on the ligand recognition mechanism of the THF-II riboswitch not only paves the way for identification of compounds targeting riboswitches, but also facilitates the exploration of THF analogs in diverse biological contexts or for therapeutic applications.

4.
Circ Res ; 132(11): e188-e205, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37139790

RESUMEN

BACKGROUND: Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca2+ homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3'-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission. METHODS: We investigated the roles of BIN1, MTM1, and DNM2 in t-tubule formation in developing mouse cardiomyocytes, and in gene-modified HL-1 and human-induced pluripotent stem cell-derived cardiomyocytes. T-tubules and proteins of interest were imaged by confocal and Airyscan microscopy, and expression patterns were examined by RT-qPCR and Western blotting. Ca2+ release was recorded using Fluo-4. RESULTS: We observed that in the postnatal mouse heart, BIN1 localizes along Z-lines from early developmental stages, consistent with roles in initial budding and scaffolding of t-tubules. T-tubule proliferation and organization were linked to a progressive and parallel increase in 4 detected BIN1 isoforms. All isoforms were observed to induce tubulation in cardiomyocytes but produced t-tubules with differing geometries. BIN1-induced tubulations contained the L-type Ca2+ channel, were colocalized with caveolin-3 and the ryanodine receptor, and effectively triggered Ca2+ release. BIN1 upregulation during development was paralleled by increasing expression of MTM1. Despite no direct binding between MTM1 and murine cardiac BIN1 isoforms, which lack exon 11, high MTM1 levels were necessary for BIN1-induced tubulation, indicating a central role of phosphoinositide homeostasis. In contrast, the developing heart exhibited declining levels of DNM2. Indeed, we observed that high levels of DNM2 are inhibitory for t-tubule formation, although this protein colocalizes with BIN1 along Z-lines, and binds all 4 isoforms. CONCLUSIONS: These findings indicate that BIN1, MTM1, and DNM2 have balanced and collaborative roles in controlling t-tubule growth in cardiomyocytes.


Asunto(s)
Dinamina II , Miocitos Cardíacos , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo
5.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795203

RESUMEN

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Asunto(s)
Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Osteosarcoma , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Translocador 3 del Nucleótido Adenina/metabolismo , Translocador 3 del Nucleótido Adenina/genética , Antineoplásicos/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Ratones , Unión Proteica
6.
J Physiol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686538

RESUMEN

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

7.
Circulation ; 147(16): 1221-1236, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36876489

RESUMEN

BACKGROUND: Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS: Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS: PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS: Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Insuficiencia Cardíaca , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Ratones , Calcio/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Insuficiencia Cardíaca/metabolismo , Células HEK293 , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
J Neurochem ; 168(3): 288-302, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38275215

RESUMEN

An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Mitocondriales , Oximas , Piperidinas , Humanos , Acetilación , Enfermedad de Alzheimer/metabolismo , Apoptosis , Células HEK293 , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Genes Cells ; 28(5): 348-363, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36811212

RESUMEN

Colorectal cancer (CRC) is one of the leading malignant cancers. DNA damage response (DDR), referring to the molecular process of DNA damage, is emerging as a promising field in targeted cancer therapy. However, the engagement of DDR in the remodeling of the tumor microenvironment is rarely studied. In this study, by sequential nonnegative matrix factorization (NMF) algorithm, pseudotime analysis, cell-cell interaction analysis, and SCENIC analysis, we have shown that DDR genes demonstrate various patterns among different cell types in CRC TME (tumor microenvironment), especially in epithelial cells, cancer-associated fibroblasts, CD8+ T cells, tumor-associated macrophages, which enhance the intensity of intercellular communication and transcription factor activation. Furthermore, based on the newly identified DDR-related TME signatures, cell subtypes including MNAT+CD8+T_cells-C5, POLR2E+Mac-C10, HMGB2+Epi-C4, HMGB1+Mac-C11, PER1+Mac-C5, PER1+CD8+T_cells-C1, POLR2A+Mac-C1, TDG+Epi-C5, TDG+CD8+T_cells-C8 are determined as critical prognostic factors for CRC patients and predictors of immune checkpoint blockade (ICB) therapy efficacy in two public CRC cohorts, TCGA-COAD and GSE39582. Our novel and systematic analysis on the level of the single-cell analysis has revealed the unique role of DDR in remodeling CRC TME for the first time, facilitating the prediction of prognosis and guidance of personalized ICB regimens in CRC.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Inmunoterapia , Algoritmos , Daño del ADN/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia
10.
Magn Reson Med ; 92(2): 702-714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38525680

RESUMEN

PURPOSE: This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY: The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS: The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS: Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION: 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Masculino , Femenino , Algoritmos , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Voluntarios Sanos , Simulación por Computador
11.
Magn Reson Med ; 91(6): 2417-2430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38291598

RESUMEN

PURPOSE: Recent work has shown MRI is able to measure and quantify signals of phospholipid membrane-bound protons associated with myelin in the human brain. This work seeks to develop an improved technique for characterizing this brain ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component in vivo accounting for T 1 $$ {\mathrm{T}}_1 $$ weighting. METHODS: Data from ultrashort echo time scans from 16 healthy volunteers with variable flip angles (VFA) were collected and fitted into an advanced regression model to quantify signal fraction, relaxation time, and frequency shift of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component. RESULTS: The fitted components show intra-subject differences of different white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ signal fraction in the corticospinal tracts measured at 0.09 versus 0.06 in other white matter structures and significantly elevated ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ frequency shift in the body of the corpus callosum at - $$ - $$ 1.5 versus - $$ - $$ 2.0 ppm in other white matter structures. CONCLUSION: The significantly different measured components and measured T 1 $$ {\mathrm{T}}_1 $$ relaxation time of the ultrashort- T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component suggest that this method is picking up novel signals from phospholipid membrane-bound protons.


Asunto(s)
Encéfalo , Protones , Humanos , Voluntarios Sanos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Fosfolípidos
12.
Phys Rev Lett ; 132(3): 033401, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307087

RESUMEN

Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the sound velocity of the Bose gas in the ^{133}Cs-^{6}Li mixture, again finding good agreement with the experimental observations both at weak and strong interactions. A central ingredient of our theory is the generalization of a fermion mediated interaction to strong Bose-Fermi scatterings and to finite frequencies. This further leads to a predicted hybridization of the sound modes of the Bose and Fermi gases, which can be directly observed using Bragg spectroscopy.

13.
Mov Disord ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561921

RESUMEN

BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is considered as a prodromal stage of synucleinopathies. Fecal short-chain fatty acid (SCFA) changes in iRBD and the relationships with synucleinopathies have never been investigated. OBJECTIVES: To investigate fecal SCFA changes among iRBD, multiple system atrophy (MSA), and Parkinson's disease (PD), and evaluate their relationships. METHODS: Fecal SCFAs and gut microbiota were measured in 29 iRBD, 42 MSA, 40 PD, and 35 normal controls (NC) using gas chromatography-mass spectrometry and 16S rRNA gene sequencing. RESULTS: Compared with NC, fecal SCFA levels (propionic, acetic, and butyric acid) were lower in iRBD, MSA, and PD. Combinations of these SCFAs could differentiate NC from iRBD (AUC 0.809), MSA (AUC 0.794), and PD (AUC 0.701). Decreased fecal SCFAs were associated with the common reducing SCFA-producing gut microbiota in iRBD, MSA, and PD. CONCLUSIONS: iRBD shares similar fecal SCFA alterations with MSA and PD, and the combination of these SCFAs might be a potential synucleinopathies-related biomarker. © 2024 International Parkinson and Movement Disorder Society.

14.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34814703

RESUMEN

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Sitios de Unión , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Unión Proteica , Ratas , Ratas Wistar
15.
Analyst ; 149(9): 2629-2636, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563459

RESUMEN

Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.


Asunto(s)
Algoritmos , Movimiento Celular , Rastreo Celular , Rastreo Celular/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
16.
Exp Brain Res ; 242(4): 869-878, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421411

RESUMEN

Ischemic stroke is one of the most vital causes of high neurological morbidity and mortality in the world. Preconditioning exercise is considered as the primary prevention of stroke to resistance to subsequent injury. We tried to research the underlying biological mechanisms of this exercise. Forty-two SD rats were randomly divided into three groups: middle cerebral artery occlusion (MCAO) group, exercise group with MCAO (EX + MCAO) group, and sham group, with 14 rats in each group. The EX + MCAO group underwent exercise preconditioning for 3 weeks before occlusion, and the other two groups were fed and exercised normally. After 3 weeks, MCAO model was made by thread plug method in the EX + MCAO group and MCAO group. After successful modeling, the Longa scale was used to evaluate the neurological impairment of rats at day 0, day 1, and day 2. The rats in each group were killed on the third day after modeling. TTC staining measured the infarct volume of each group. The morphology and apoptosis of cortical cells were observed by HE and Tunel staining. Three rats in each group underwent high-throughput sequencing. Bioinformatic analysis was used to find the deferentially expressed genes (DEGs) and predict the transcription factor binding sites (TFBS) of the next-generation sequencing results. Gene enrichment (GSEA) was used to analyze potential functional genes and their corresponding signaling pathways. The Longa scale showed EX + MCAO group had the neurological function better than the modeling group (P < 0.001). TTC staining showed that the infarct size of EX + MCAO group was less than MCAO group (P < 0.05). HE and Tunel staining showed that the cells in the EX + MCAO group and the sham group had normal morphology and fewer apoptotic cells than MCAO group. A new gene named 7994 was discovered and TFBS of this gene was predicted, which could interact with key genes such as Foxd3, Foxa2, NR4A2, SP1, CEBPA, and SOX10. GSEA showed that EX + MCAO group could promote and regulate angiogenesis and apoptosis through PI3K-AKT pathway. Preconditioning exercise could improve nerve function and reduce infarct size in rats. The underlying mechanism is to regulate the PI3K-AKT pathway through several key genes, promote cerebral angiogenesis, and reduce apoptosis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Ratas Sprague-Dawley , Accidente Cerebrovascular Isquémico/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Infarto de la Arteria Cerebral Media , Encéfalo/metabolismo , Proteínas Represoras , Factores de Transcripción Forkhead/metabolismo
17.
Mol Biol Rep ; 51(1): 377, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427114

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) exerts neuroprotective effects early in cerebral ischemia/reperfusion (I/R) injury. Intermittent theta-brust stimulation (iTBS), a more time-efficient modality of rTMS, improves the efficiency without at least decreasing the efficacy of the therapy. iTBS elevates cortical excitability, and in recent years it has become increasingly common to apply iTBS to patients in the early post-IS period. However, little is known about the neuroprotective mechanisms of iTBS. Endoplasmic reticulum stress (ERS), and ferroptosis have been shown to be involved in the development of I/R injury. We aimed to investigate the potential regulatory mechanisms by which iTBS attenuates neurological injury after I/R in rats. METHODS: Rats were randomly divided into three groups: sham-operated group, MCAO/R group, and MCAO/R + iTBS group, and were stimulated with iTBS 36 h after undergoing middle cerebral artery occlusion (MCAO) or sham-operated. The expression of ERS, ferroptosis, and apoptosis-related markers was subsequently detected by western blot assays. We also investigated the mechanism by which iTBS attenuates nerve injury after ischemic reperfusion in rats by using the modified Neurological Severity Score (mNSS) and the balance beam test to measure nerve function. RESULTS: iTBS performed early in I/R injury attenuated the levels of ERS, ferroptosis, and apoptosis, and improved neurological function, including mNSS and balance beam experiments. It is suggested that this mode of stimulation reduces the cost per treatment by several times without compromising the efficacy of the treatment and could be a practical and less costly intervention.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Humanos , Ratas , Animales , Estimulación Magnética Transcraneal , Daño por Reperfusión/terapia , Reperfusión , Estrés del Retículo Endoplásmico
18.
BMC Urol ; 24(1): 128, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886739

RESUMEN

PURPOSE: The aim of our study was to investigate the comparative outcomes of five different energy types on surgical efficacy and postoperative recovery in patients with benign prostate hyperplasia. METHODS: The literature was systematically reviewed on December 1st, 2023, encompassing studies retrieved from PubMed, Embase, Web of Science, and The Cochrane Library databases that incorporated clinical studies of holmium laser enucleation of the prostate (HoLEP), Thulium:YAG laser enucleation of the prostate (ThuLEP), transurethral plasmakinetic enucleation of prostate (PKEP), diode laser enucleation of the prostate (DiLEP) and thulium fiber laser enucleation of the prostate (ThuFLEP) in the treatment of prostatic hyperplasia. Two independent reviewers extracted study data and conducted quality assessments using the Cochrane Collaboration's Risk of Bias tool and Newcastle-Ottawa Scale (NOS). Network meta-analysis (NMA) was employed to indirectly analyze the outcomes of endoscopic enucleation of the prostate (EEP) techniques. RESULTS: The study included a total of 38 studies, comprising 21 non-randomized controlled trials (nRCTs) and 17 randomized controlled trials (RCTs), incorporating five distinct techniques: holmium laser, Thulium:YAG laser, bipolar plasma, diode laser and thulium fiber laser. In comparing treatment durations, ThuLEP and HoLEP had shorter overall hospital stays than PKEP, while the enucleation time of ThuLEP and HoLEP was shorter than that of ThuFLEP. Moreover, the enucleation tissue weight of both thulium fiber laser and holmium laser was heavier than bipolar plasma. However, the analysis did not reveal any statistically significant variation in complications among the various types of enucleation. In postoperative follow-up, the IPSS at 3 months post-operation was superior in the Thulium:YAG laser group compared to the holmium laser group. The thulium fiber laser technique demonstrated significant advantages over other enucleation methods in terms of QoL and PVR at 12 months after surgery. CONCLUSION: Theoretical properties may vary among different energy sources; however, there are no discernible clinical differences in operation-related parameters, postoperative complications, and postoperative follow-up. Therefore, the choice of laser does not significantly impact the outcome. However, due to the limited number of included studies, future research should focus on larger sample sizes and multicenter investigations to further validate the findings of this study.


Asunto(s)
Terapia por Láser , Metaanálisis en Red , Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/cirugía , Resultado del Tratamiento , Terapia por Láser/métodos , Prostatectomía/métodos , Láseres de Estado Sólido/uso terapéutico
19.
J Clin Lab Anal ; 38(9): e25038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590133

RESUMEN

OBJECTIVE: This study aimed to establish a highly sensitive and rapid single-tube, two-stage, multiplex recombinase-aided qPCR (mRAP) assay to specifically detect the khe, blaKPC-2, and blaNDM-1 genes in Klebsiella pneumoniae. METHODS: mRAP was carried out in a qPCR instrument within 1 h. The analytical sensitivities of mRAP for khe, blaKPC-2, and blaNDM-1 genes were tested using recombinant plasmids and dilutions of reference strains. A total of 137 clinical isolates and 86 sputum samples were used to validate the clinical performance of mRAP. RESULTS: mRAP achieved the sensitivities of 10, 8, and 14 copies/reaction for khe, blaKPC-2, and blaNDM-1 genes, respectively, superior to qPCR. The Kappa value of qPCR and mRAP for detecting khe, blaKPC-2, and blaNDM-1 genes was 1, 0.855, and 1, respectively (p < 0.05). CONCLUSION: mRAP is a rapid and highly sensitive assay for potential clinical identification of khe, blaKPC-2, and blaNDM-1 genes in K. pneumoniae.


Asunto(s)
Klebsiella pneumoniae , Reacción en Cadena de la Polimerasa Multiplex , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , beta-Lactamasas/genética , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/diagnóstico , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Proteínas Bacterianas/genética , Recombinasas/genética , Recombinasas/metabolismo
20.
Ecotoxicol Environ Saf ; 281: 116563, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878560

RESUMEN

Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA