Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202402976, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267291

RESUMEN

A three-component cyclization reaction of O-acyl oximes, silyl enol ethers and elemental sulfur has been developed, in which silyl enol ether acts as a C1 synthon to participate in cyclization reaction and build series of 2-aroylnaphthothiazoles and 2-aroylbenzothienothiazoles. The preliminary exploration of the reaction mechanism indicated that this transformation probably proceeded through a radical process, involving S3•- as a key intermediate, enabling subsequent nucleophilic substitution with O-acyl oximes to afford iminosulfur radical, which undergoes 1,3-H shift to yield sulfur-centered radical intermediate. And then this intermediate undergoes radical addition with silyl enol ether, leading to the formation of the titled products through intramolecular cyclization and oxidation. Moreover, the products obtained exhibit favorable fluorescence properties, which indicates their potential application as functional materials.

2.
Phys Chem Chem Phys ; 26(5): 4683-4691, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251932

RESUMEN

The manipulation and regulation of valley characteristics have aroused widespread interest in emerging information fields and fundamental research. Realizing valley polarization is one crucial issue for spintronic and valleytronic applications, the concepts of a half-valley metal (HVM) and ferrovalley (FV) materials have been put forward. Then, to separate electron and hole carriers, a fresh concept of a quasi-HVM (QHVM) has been proposed, in which only one type of carrier is valley polarized for electron and hole carriers. Based on first-principles calculations, we demonstrate that the Janus monolayer VSiGeP4 has QHVM character. To well regulate the QHVM state, strain engineering is utilized to adjust the electronic and valley traits of monolayer VSiGeP4. In the discussed strain range, monolayer VSiGeP4 always favors the ferromagnetic ground state and out-of-plane magnetization, which ensures the appearance of spontaneous valley polarization. It is found that the QHVM state can be induced in different electronic correlations (U), and the strain can effectively tune the valley, magnetic, and electronic features to maintain the QHVM state under various U values. Our work opens up a new research idea in the design of multifunctional spintronic and valleytronic devices.

3.
Phys Chem Chem Phys ; 25(23): 15767-15776, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37254578

RESUMEN

Topological phase transition can be induced by electronic correlation effects combined with spin-orbit coupling (SOC). Here, based on the first-principles calculations +U approach, the influence of electronic correlation effects and SOC on topological and electronic properties of the Janus monolayer OsClBr is investigated. With intrinsic out-of-plane (OOP) magnetic anisotropy, the Janus monolayer OsClBr exhibits a sequence of states, namely, the ferrovalley (FV) to half-valley-metal (HVM) to quantum anomalous valley Hall effect (QAVHE) to HVM to FV states with increasing U values. The QAVHE is characterized by a chiral edge state linking the conduction and valence bands with a Chern number C = 1, which is closely associated with the band inversion between dx2-y2/dxy and dz2 orbitals, and sign-reversible Berry curvature. The section with larger U values (2.31-2.35 eV) is very essential for determining the new HVM and QAVHE states, and also proves that a strong electron correlation effect exists in the interior of the Janus monolayer OsClBr. When taking into consideration a representative U value (U = 2.5 eV), a valley polarization value of 157 meV can be observed, which can be switched by reversing the magnetization direction of Os atoms. It is noteworthy that the Curie temperature (TC) strongly depends on the electronic correlation effects. Our work provides a comprehensive discussion on the electronic and topological properties of the Janus monolayer OsClBr, and demonstrates that the electronic correlation effects combined with SOC can drive the emergence of QAVHE, which will open up new opportunities for valleytronic, spintronic, and topological nanoelectronic applications.

4.
Environ Toxicol ; 38(6): 1318-1331, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919336

RESUMEN

BACKGROUND: Osteosarcoma (OS) immune environment is complexed and the immune factors-related to OS progression need to be explored. Tumor-associated macrophages (TAMs) are regarded as immune suppressive and tumor-promoting cells. However, the underlying mechanisms through which TAMs function are still fragmentary. Here, we aim to explore the underlying mechanisms by which TAMs regulate OS progression. METHODS: TAMs from OS tissues were isolated by flow cytometry. Exosomes derived from TAMs were separated using ultracentrifugation and western blotting. Transmission electron microscopy (TEM), and flow cytometry were constructed to characterize TAMs-derived exosomes. Additionally, the differential MicroRNAs (miRNAs) and genes were detected through RNA sequencing, and further validated using real-time PCR (RT-PCR). OS cell metastasis ability was assessed using transwell invasion and scratch wound healing assays. MiRNAs mimic and lentiviral vectors were utilized to explore the effects on OS progression. RESULTS: Exosome secreted by TAMs accelerated the OS metastasis. Let-7a level was upregulated in TAMs derived exosomes, which downregulated C15orf41 by targeting 3'-untranslated region (UTR). Furthermore, overexpressing let-7a enhanced invasion and migration by blocking the transcription of C15orf41. In consistent, up-regulating let-7a promoted OS progression and made the prognosis to be worse, which can be reversed by C15orf41 overexpression. CONCLUSION: This study highlighted the critical role of TAMs-derived exosomes in OS progression and explored the potential value of the let-7a/C15orf41 axis as an indicator or target for OS.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Macrófagos Asociados a Tumores/patología , Línea Celular Tumoral , MicroARNs/genética , Osteosarcoma/genética , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
5.
Proteins ; 90(11): 1851-1872, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35514069

RESUMEN

The revelation of protein folding is a challenging subject in both discovery and description. Except for acquirement of accurate 3D structure in protein stable state, another big hurdle is how to discover structural flexibility for protein innate character. Even if a huge number of flexible conformations are known, difficulty is how to represent these conformations. A novel approach, protein structure fingerprint, has been developed to expose the comprehensive local folding variations, and then construct folding conformations for entire protein. The backbone of five amino acid residues was identified as a universal folden, and then a set of Protein Folding Shape Code (PFSC) was derived for completely covering folding space in alphabetic description. Sequentially, a database was created to collect all possible folding shapes of local folding variations for all permutation of five amino acids. Successively, Protein Folding Variation Matrix (PFVM) assembled all possible local folding variations along sequence for a protein, which possesses several prominent features. First, it showed the fluctuation with certain folding patterns along sequence which revealed how the protein folding was related the order of amino acids in sequence. Second, all folding variations for an entire protein can be simultaneously apprehended at a glance within PFVM. Third, all conformations can be determined by local folding variations from PFVM, so total number of conformations is no longer ambiguous for any protein. Finally, the most possible folding conformation and its 3D structure can be acquired according PFVM for protein structure prediction. Therefore, the protein structure fingerprint approach provides a significant means for investigation of protein folding problem.


Asunto(s)
Pliegue de Proteína , Proteínas , Secuencia de Aminoácidos , Aminoácidos , Conformación Proteica , Proteínas/química
6.
J Endovasc Ther ; : 15266028221133700, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346065

RESUMEN

PURPOSE: To investigate the demographics, clinical features, radiologic measurement, treatment, and outcomes of symptomatic spontaneous isolated superior mesenteric artery dissection (SISMAD) according to computed tomography (CT) classification. METHODS: This retrospective study included 201 patients diagnosed with symptomatic SISMAD from November 2014 to December 2020. Symptomatic spontaneous isolated superior mesenteric artery dissection was categorized into four types based on CT images by Yun's angiographic classification. Their clinical characteristics, images features, treatment methods, and radiological outcomes were comparatively analyzed by CT angiographic types. RESULTS: SISMADs were categorized into type I (13.9%) patent false lumen (FL) with both entry and re-entry; type IIa (37.3%), blind pouch of FL; type IIb (43.3%), thrombosed FL; and type III (5.5%), and the occlusion of superior mesenteric artery (SMA). Type IIb, the most common SISMAD, showed the largest true lumen (TL) residual diameter and the lowest percentage of TL stenosis. Type III positioned most proximally to SMA origin and had the maximum dissection length. Symptomatic spontaneous isolated superior mesenteric artery dissections underwent conservative (75.1%), endovascular (22.4%), and surgical (2.5%) treatment. Conservative treatment was more frequent in type I (85.7%) and type IIb (83.9%) than in type IIa (65.3%) and type III (45.5%). Endovascular intervention was more commonly utilized in type IIa (32.0%) and type III (36.4%) than in type I (14.3%) and type IIb (14.9%). Conservative patients achieved FL vanishment/shrinkage (57.8%), stabilization (26.6%), and enlargement (15.6%). After conservative treatment, type I showed angiographic FL stabilization; type IIa achieved FL shrinkage (48.1%), stabilization (22.2%), and enlargement (29.6%); type IIb exhibited FL vanishment/shrinkage (92.0%) and enlargement (8.0%). Cumulative rate of stent patency was 92.3% during 6-year follow-up. CONCLUSIONS: Conservative management with close follow-up is initially provided especially for types I and IIb. Morphological stabilization is more frequent in type I of patent FL with entry and re-entry. False lumen vanishment or shrinkage was more likely to occur in type IIb due to the thrombus absorption. Endovascular intervention has excellent long-term in-stent patency and is predominantly utilized in types IIa and III. Blood flow sustained into a blind-ending FL causes the TL compression and stenosis in type IIa. Type III with the occlusion of SMA has the high risk of bowel ischemia. CLINICAL IMPACT: According to Yun's angiographic classification of spontaneous isolated superior mesenteric artery dissection (SISMAD), type I (13.9%) has patent true and false lumen and the morphological pattern is maintained stable; type IIa (37.3%) possesses a patent blind-ending false lumen which might shrink, remain unchanged, or enlarge; and endovascular intervention is suggested when conservative treatment failed; type IIb (43.3%) recovers spontaneously due to the absorption of false lumen thrombus and conservative treatment is preferentially considered; type III (5.5%) with the occlusion of main trunk carries a high risk of bowel necrosis, early endovascular intervention is proposed, and open surgery might be necessary.

7.
Phys Chem Chem Phys ; 24(46): 28306-28313, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383084

RESUMEN

It is essential to find a kind of electrocatalyst for hydrogen evolution reduction (HER) comparable with a noble metal that has good conductivity and abundant active sites. Based on systematic searches by first-principles calculations, we discovered two-dimensional transition-metal nitrides, tetra-phase OsN2 and ReN2 monolayers, as potential HER electrocatalysts with superior thermodynamic and kinetic stability. They exhibited excellent catalytic activity due to the presence of multiple active sites with a density of 8 × 1015 site per cm2 and an overpotential close to 0. In addition, we also found that the synergistic effect of strain and coverage makes them have a good hydrogen evolution activity. The ΔGH of the OsN2 monolayer at 1% tensile strain under 3/4 hydrogen coverage is 0.02 eV, and that of ReN2 at 1/2 hydrogen coverage could decrease to 0.001 eV. Different from other common transition metal nitrides, we found that the active sites of OsN2 and ReN2 monolayers are both at nitrogen atoms, which could be further understood by the crystal orbital Hamiltonian population analysis between N and metal atoms. All these interesting findings not only provide new excellent candidates but also provide new insights into the mechanism of hydrogen evolution of nitrides.

8.
Ann Vasc Surg ; 81: 387.e1-387.e8, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34656728

RESUMEN

Takayasu arteritis is a chronic inflammatory vasculitis affecting mainly the aorta and its branches. Stenosis and occlusion of the involved vessels usually develop; however, their dilation and aneurysmal formation are extremely rare. Although aneurysmal disease has been reported in adults with Takayasu arteritis, it is a rare entity in children. The present report described an 11-year-old male found to have the subclavian-axillary, abdominal aortoiliac, lower extremity artery aneurysms with mural thrombi. Aneurysms were also found at the proximal and middle segments of the right coronary artery. The patient was conservatively treated with corticosteroid in addition to antiplatelet and anticoagulation agents.


Asunto(s)
Aneurisma de la Aorta Abdominal , Arteritis de Takayasu , Adulto , Aorta , Niño , Vasos Coronarios , Humanos , Extremidad Inferior , Masculino , Arteritis de Takayasu/complicaciones , Arteritis de Takayasu/diagnóstico por imagen , Arteritis de Takayasu/tratamiento farmacológico , Resultado del Tratamiento
9.
Phys Chem Chem Phys ; 23(21): 12068-12074, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34013305

RESUMEN

Two-dimensional (2D) Weyl semi-half-metals (WSHMs) have attracted tremendous interest for their fascinating properties combining half-metallic ferromagnetism and Weyl fermions. In this work, we present a NiCS3 monolayer as a new 2D WSHM material using systematic first-principles calculations. It has 12 fully spin-polarized Weyl nodal points in one spin channel with a Fermi velocity of 3.18 × 105 m s-1 and a fully gapped band structure in the other spin channel. It exhibits good mechanical and thermodynamic stabilities and the Curie temperature is estimated to be 403 K. The Weyl points are protected by vertical mirror plane symmetry along Γ-K, and each of them remains gapless even under spin-orbit coupling when the direction of spin is perpendicular to the Γ-K line including the Weyl point, which makes it possible to control the opening and closing of Weyl points by applying and rotating external magnetic fields. Our work not only provides a promising 2D WSHM material to explore the fundamental physics of symmetry protected ferromagnetic Weyl fermions, but also reveals a potential mechanism of band engineering of 2D WSHM materials in spintronics.

10.
Phys Chem Chem Phys ; 21(9): 5165-5169, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30775766

RESUMEN

Ferroelasticity and band topology are two intriguing yet distinct quantum states of condensed matter materials. Their coexistence in a single two-dimensional (2D) lattice, however, has never been observed. Here, we found that the 2D tetragonal HfC monolayer allowed simultaneous presence of ferroelastic and topological orders. By using first-principles calculations, we found that it could allow a low switching barrier with reversible strain of 17.4%, indicating that the anisotropic properties are achievable experimentally for a 2D tetragonal lattice. More interestingly, the tuning of topological behaviors with strain led to spin-separated and gapless edge states, that is, the quantum spin Hall effect. These findings from the coupling of two quantum orders offer insights into ferroelastic control over topological edge states for achieving multifunctional properties in next-generation 2D nanodevices.

11.
Phys Chem Chem Phys ; 19(43): 29647-29652, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29085920

RESUMEN

Topological phases, especially topological crystalline insulators (TCIs), have been intensively explored and observed experimentally in three-dimensional (3D) materials. However, two-dimensional (2D) films are explored much less than 3D TCIs, and even 2D topological insulators. Based on ab initio calculations, here we investigate the electronic and topological properties of 2D PbTe(001) few-layer films. The monolayer and trilayer PbTe are both intrinsic 2D TCIs with a large band gap reaching 0.27 eV, indicating a high possibility for room-temperature observation of quantized conductance. The origin of the TCI phase can be attributed to the px,y-pz band inversion, which is determined by the competition of orbital hybridization and the quantum confinement effect. We also observe a semimetal-TCI-normal insulator transition under biaxial strains, whereas a uniaxial strain leads to Z2 nontrivial states. In particular, the TCI phase of a PbTe monolayer remains when epitaxially grown on a NaI semiconductor substrate. Our findings on the controllable quantum states with sizable band gaps present an ideal platform for realizing future topological quantum devices with ultralow dissipation.

12.
Zhongguo Zhong Yao Za Zhi ; 42(8): 1603-1608, 2017 Apr.
Artículo en Zh | MEDLINE | ID: mdl-29071869

RESUMEN

Under the traditional processing theory "wine processing could promote the efficacy", Rhubarb after wine processing could treat the upper energizer diseases such as red swelling, and breath sores. Processing changes the medicinal properties of rhubarb, and thus results in different focuses in clinical application. In this study, a sensitive and specific method was developed for the determination of aloe-emodin, rhein and emodin in rats tissue. Rhubarb raw materials and its wine processed decoction were given to SD rats respectively by gavage administration, and then the contents of aloe-emodin, rhein and emodin in the tissues (heart, lung, brain, liver, kidney) were determined by HPLC-MS to explore the effect of wine processing on free anthraquinones in rat tissues. Experimental results showed that wine processing can significantly change the distribution of aloe emodin, rhein and emodin in rats in vivo, and the distribution of these components was increased in heart and lung tissues.There was no significant change of distribution in the liver and the kidney as compared with raw product group, and these three ingredients were not detected in the brain, indicating that aloe-emodin, rhein, emodin can not pass through the blood brain barrier.Therefore, wine processing had greater effect on distribution of free anthraquinones in rat tissues.This also verified the theory of traditional Chinese medicine, providing experimental basis for rhubarb processing mechanism.


Asunto(s)
Antraquinonas/farmacocinética , Emodina/farmacocinética , Rheum/química , Animales , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Vino
13.
Phys Chem Chem Phys ; 18(17): 12169-74, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27076272

RESUMEN

The control of spin without a magnetic field is one of the challenges in developing spintronic devices. Here, based on first-principles calculations, we predict a new kind of ferromagnetic half-metal (HM) with a Curie temperature of 244 K in a two-dimensional (2D) germanene van der Waals heterostructure (HTS). Its electronic band structures and magnetic properties can be tuned with respect to external strain and electric field. More interestingly, a transition from HM to bipolar-magnetic-semiconductor (BMS) to spin-gapless-semiconductor (SGS) in a HTS can be realized by adjusting the interlayer spacing. These findings provide a promising platform for 2D germanene materials, which hold great potential for application in nanoelectronic and spintronic devices.

14.
Phys Chem Chem Phys ; 16(41): 22861-6, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25241677

RESUMEN

We perform first-principles calculations to study the geometric, energetics and electronic properties of graphene supported on BC3 monolayer. The results show that overall graphene interacts weakly with BC3 monolayer via van der Waals interaction. The energy gap of graphene can be up to ∼0.162 eV in graphene/BC3 heterobilayers (G/BC3 HBLs), which is large enough for the gap opening at room temperature. We also find that the interlayer spacing and in-plane strain can tune the band gap of G/BC3 HBLs effectively. Interestingly, the characteristics of a Dirac cone with a nearly linear band dispersion relationship of graphene can be preserved, accompanied by a small electron effective mass, and thus the higher carrier mobility is still expected. These findings provide a possible way to design effective FETs out of graphene on a BC3 substrate.

15.
Phys Chem Chem Phys ; 16(30): 15968-78, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24964160

RESUMEN

We performed first-principles calculations to study the adsorption characteristics of alkali, alkali-earth, group III, and 3d transition-metal (TM) adatoms on germanene. We find that the adsorption of alkali or alkali-earth adatoms on germanene has minimal effects on geometry of germanene. The significant charge transfer from alkali adatoms to germanene leads to metallization of germanene, whereas alkali-earth adatom adsorption, whose interaction is a mixture of ionic and covalent, results in semiconducting behavior with an energy gap of 17-29 meV. For group III adatoms, they also bind germanene with mixed covalent and ionic bonding character. Adsorption characteristics of the transition metals (TMs) are rather complicated, though all TM adsorptions on germanene exhibit strong covalent bonding with germanene. The main contributions to the strong bonding are from the hybridization between the TM 3d and Ge pz orbitals. Depending on the induced-TM type, the adsorbed systems can exhibit metallic, half-metallic, or semiconducting behavior. Also, the variation trends of the dipole moment and work function with the adsorption energy across the different adatoms are discussed. These findings may provide a potential avenue to design new germanene-based devices in nanoelectronics.

16.
Nanoscale ; 16(17): 8639-8649, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38618905

RESUMEN

It is both conceptually and practically fascinating to explore fundamental research studies and practical applications of two-dimensional systems with the tunable abundant valley Hall effect. In this work, based on first-principles calculations, the tunable abundant valley Hall effect is proved to appear in Janus monolayer VCGeN4. When the magnetization is along the out-of-plane direction, VCGeN4 is an intrinsic ferromagnetic semiconductor with a valley feature. The intriguing spontaneous valley polarization exists in VCGeN4 due to the common influence of broken inversion and time-reversal symmetries, which makes it easier to realize the anomalous valley Hall effect. Furthermore, we observe that the valley-non-equilibrium quantum anomalous Hall effect is driven by external strain, which is located between two half-valley-metal states. When reversing the magnetization, the spin flipping makes the position of the edge state to change from one valley to another valley, demonstrating an intriguing behavior known as chiral spin-valley locking. Although the easy magnetic axis orientation is along the in-plane direction, we can utilize an external magnetic field to transform the magnetic axis orientation. Moreover, it is found that the valley state, electronic and magnetic properties can be well regulated by the electric field. Our works explore the mechanism of the tunable abundant valley Hall effect by applying an external strain and electric field, which provides a perfect platform to investigate the spin, valley, and topology.

17.
Food Sci Nutr ; 12(6): 4110-4121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873490

RESUMEN

Among middle-aged and older people, balanced and nutritious diets are the foundation for maintaining bone health and preventing osteoporosis. This study is aimed at investigating the link between dietary folic acid intake and the risk of osteoporosis among middle-aged and older people. A total of 20,686 people from the National Health and Nutritional Examination Survey (NHANES) 2007-2010 are screened and included, and 5312 people aged ≥45 years with integral data are ultimately enrolled in evaluation. Demographics and dietary intake-related data are gathered and analyzed, and the odds ratio (OR) and 95% confidence interval (CI) of each tertile category of dietary folic acid intake and each unit increase in folic acid are assessed via multivariate logistic regression models. On this basis, the receiver operating characteristic (ROC) curve is used to identify the optimal cutoff value of dietary folic acid intake for indicating the risk of osteoporosis. Of 5312 people with a mean age of 62.4 ± 11.0 years old, a total of 513 people with osteoporosis are screened, and the dietary folic acid intake amount of the osteoporosis group is significantly lower than that of the non-osteoporosis group (p < .001). The lowest tertile category is then used to act as a reference category, and a higher dietary folic acid intake amount is observed to be positively related to lower odds for risk of osteoporosis. This trend is also not changed in adjustments for combinations of different covariates (p all < .05). Based on this, a dietary folic acid intake of 475.5 µg/day is identified as an optimal cutoff value for revealing osteoporosis. Collectively, this nationwide population-based study reveals that a higher daily dietary folic acid intake has potential protective effects on osteoporosis in middle-aged and older people.

18.
Nat Prod Res ; 38(10): 1719-1726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265118

RESUMEN

A new lignan, named pouzolignan P (1), together with 14 known ones (2 - 15) were isolated from the roots of Pouzolzia zeylanica (L.) Benn. Their structures were deduced based on the detailed spectroscopic analysis. All the isolates were evaluated for their inhibitory activities toward the ATP citrate lyase (ACLY). Among them, four lignans, isopouzolignan K (3), gnemontanins E (5), gnetuhainin I (6), and styraxlignolide D (15) showed excellent ACLY inhibitory effect with IC50 values of 9.06, 0.59, 2.63, and 7.62 µM, respectively. These compounds were further evaluated for their cholesterol-lowing effects on ox-LDL-induced high-cholesterol HepG2 cells. Compound 15 emerges as the most potent ACLY inhibitor, which significantly decreased the TC level in a dose-dependent manner. In addition, molecular docking simulations elucidated that 15 formed a strong hydrogen-bond interaction with Glu599 of ACLY, which was an important site responsible for the enzyme catalytic activity.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Lignanos , ATP Citrato (pro-S)-Liasa/química , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Colesterol
19.
J Healthc Eng ; 2023: 7382316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726774

RESUMEN

Cardiac auscultation is a noninvasive, convenient, and low-cost diagnostic method for heart valvular disease, and it can diagnose the abnormality of the heart valve at an early stage. However, the accuracy of auscultation relies on the professionalism of cardiologists. Doctors in remote areas may lack the experience to diagnose correctly. Therefore, it is necessary to design a system to assist with the diagnosis. This study proposed a computer-aided heart valve disease diagnosis system, including a heart sound acquisition module, a trained model for diagnosis, and software, which can diagnose four kinds of heart valve diseases. In this study, a training dataset containing five categories of heart sounds was collected, including normal, mitral stenosis, mitral regurgitation, and aortic stenosis heart sound. A convolutional neural network GoogLeNet and weighted KNN are used to train the models separately. For the model trained by the convolutional neural network, time series heart sound signals are converted into time-frequency scalograms based on continuous wavelet transform to adapt to the architecture of GoogLeNet. For the model trained by weighted KNN, features from the time domain and time-frequency domain are extracted manually. Then feature selection based on the chi-square test is performed to get a better group of features. Moreover, we designed software that lets doctors upload heart sounds, visualize the heart sound waveform, and use the model to get the diagnosis. Model assessments using accuracy, sensitivity, specificity, and F1 score indicators are done on two trained models. The results showed that the model trained by modified GoogLeNet outperformed others, with an overall accuracy of 97.5%. The average accuracy, sensitivity, specificity, and F1 score for diagnosing four kinds of heart valve diseases are 98.75%, 96.88%, 99.22%, and 97.99%, respectively. The computer-aided diagnosis system, with a heart sound acquisition module, a diagnostic model, and software, can visualize the heart sound waveform and show the reference diagnostic results. This can assist in the diagnosis of heart valve diseases, especially in remote areas, which lack skilled doctors.


Asunto(s)
Ruidos Cardíacos , Enfermedades de las Válvulas Cardíacas , Humanos , Enfermedades de las Válvulas Cardíacas/diagnóstico , Auscultación Cardíaca , Aprendizaje Automático , Computadores
20.
Nanoscale ; 15(18): 8395-8405, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37092871

RESUMEN

Topology and ferrovalley (FV) are two essential concepts in emerging device applications and the fundamental research field. To date, relevant reports are extremely rare about the coupling of FV and topology in a single system. By Monte Carlo (MC) simulations and first-principles calculations, a stable intrinsic FV ScBrI semiconductor with high Curie temperature (TC) is predicted. Because of the combination of spin-orbital coupling (SOC) and exchange interaction, the Janus monolayer ScBrI shows a spontaneous valley polarization of 90 meV, which is located in the top valence band. For the magnetization direction perpendicular to the plane, the changes from FV to half-valley-metal (HVM), to valley-nonequilibrium quantum anomalous Hall effect (VQAHE), to HVM, and to FV can be induced by strain engineering. It is worth noting that there are no particular valley polarization and VQAHE states for in-plane (IP) magnetic anisotropy. By obtaining the real magnetic anisotropy energy (MAE) under different strains, due to spontaneous valley polarization, intrinsic out-of-plane (OOP) magnetic anisotropy, a chiral edge state, and a unit Chern number, the VQAHE can reliably appear between two HVM states. The increasing strains can induce VQAHE, which can be clarified by a band inversion between dx2-y2/dxy and dz2 orbitals, and a sign-reversible Berry curvature. Once synthesized, the Janus monolayer ScBrI would find more significant applications in topological electronic, valleytronic, and spintronic nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA