RESUMEN
Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.
Asunto(s)
Glioblastoma/metabolismo , Microglía/metabolismo , Temozolomida/farmacología , Adulto , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Resistencia a Antineoplásicos/fisiología , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Interleucina-11/inmunología , Interleucina-11/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Microglía/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos , Temozolomida/metabolismo , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/fisiologíaRESUMEN
Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvß3 via upregulation of the ß3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. Although nutrient deprivation is known to promote acute, yet transient, activation of the stress sensor AMP-activated protein kinase (AMPK), stress-induced αvß3 expression via Src activation unexpectedly led to secondary and sustained AMPK activation. This resulted in the nuclear localization of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) and upregulation of glutamine metabolism, the tricarboxylic acid cycle, and oxidative phosphorylation. Pharmacological or genetic targeting of this axis prevented lung cancer cells from evading the effects of nutrient stress, thereby blocking tumor initiation in mice following orthotopic implantation of lung cancer cells. These findings reveal a molecular pathway driven by nutrient stress that results in cancer stem cell reprogramming to promote metabolic flexibility and tumor initiation. SIGNIFICANCE: Upregulation of integrin αvß3, a cancer stem cell marker, in response to nutrient stress activates sustained AMPK/PGC1α signaling that induces metabolic reprogramming in lung cancer cells to support their survival. See related commentary by Rainero, p. 1543.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Integrina alfaVbeta3 , Neoplasias Pulmonares , Regulación hacia Arriba , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Integrina alfaVbeta3/metabolismo , Ratones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Estrés Fisiológico , Nutrientes/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión GénicaRESUMEN
Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.