Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272231

RESUMEN

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Asunto(s)
Hexoquinasa , Factor 1 de Elongación Peptídica , Animales , Cricetinae , Humanos , Adenosina Trifosfato , Línea Celular , Cricetulus , Hexoquinasa/genética , Hexoquinasa/metabolismo , Lípidos , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Glucólisis , Oxidación-Reducción , Movimiento Celular , Proliferación Celular , Metabolismo de los Lípidos
2.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820923

RESUMEN

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/metabolismo , Aurora Quinasa B , Proteómica , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Metástasis de la Neoplasia , Quinasas Asociadas a rho
3.
Cell Commun Signal ; 22(1): 310, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844908

RESUMEN

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
4.
Cancer Immunol Immunother ; 71(5): 1259-1273, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34854949

RESUMEN

The low mutational burden of epithelial ovarian cancer (EOC) is an impediment to immunotherapies that rely on conventional MHC-restricted, neoantigen-reactive T lymphocytes. Mucosa-associated invariant T (MAIT) cells are MR1-restricted T cells with remarkable immunomodulatory properties. We sought to characterize intratumoral and ascitic MAIT cells in EOC. Single-cell RNA sequencing of six primary human tumor specimens demonstrated that MAIT cells were present at low frequencies within several tumors. When detectable, these cells highly expressed CD69 and VSIR, but otherwise exhibited a transcriptomic signature inconsistent with overt cellular activation and/or exhaustion. Unlike mainstream CD8+ T cells, CD8+ MAIT cells harbored high transcript levels of TNF, PRF1, GZMM and GNLY, suggesting their arming and cytotoxic potentials. In a congenic, MAIT cell-sufficient mouse model of EOC, MAIT and invariant natural killer T cells amassed in the peritoneal cavity where they showed robust IL-17A and IFN-γ production capacities, respectively. However, they gradually lost these functions with tumor progression. In a cohort of 23 EOC patients, MAIT cells were readily detectable in all ascitic fluids examined. In a sub-cohort in which we interrogated ascitic MAIT cells for functional impairments, several exhaustion markers, most notably VISTA, were present on the surface. However, ascitic MAIT cells were capable of producing IFN-γ, TNF-α and granzyme B, but neither IL-17A nor IL-10, in response to an MR1 ligand, bacterial lysates containing MR1 ligands, or a combination of IL-12 and IL-18. In conclusion, ascitic MAIT cells in EOC possess inducible effector functions that may be modified in future immunotherapeutic strategies.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Neoplasias Ováricas , Animales , Ascitis , Linfocitos T CD8-positivos , Carcinoma Epitelial de Ovario , Señales (Psicología) , Citocinas , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Interleucina-17 , Ligandos , Ratones , Antígenos de Histocompatibilidad Menor
5.
J Obstet Gynaecol Res ; 46(8): 1282-1291, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32464696

RESUMEN

AIM: Obesity has been associated with changes in autophagy and its increasing prevalence among pregnant women is implicated in higher rates of placental-mediated complications of pregnancy such as pre-eclampsia and intrauterine growth restriction. Autophagy is involved in normal placentation, thus changes in autophagy may lead to impaired placental function and development. The aim of this study was to investigate the connection between obesity and autophagy in the placenta in otherwise uncomplicated pregnancies. METHODS: Immunohistochemistry and western blot analysis were done on placental and omental samples from obese (body mass index [BMI] ≥30 kg/m2 ) and normal weight (BMI <25 kg/m2 ) pregnant women with singleton pregnancies undergoing planned Caesarean delivery without labor at term. Samples were analyzed for autophagic markers LC3B and p62 in the peripheral, middle and central regions of the placenta and in omental adipocytes, milky spots and vasculature. RESULTS: As pre-pregnancy BMI increased, there was an increase in both placental and fetal weight as well as decreased levels of LC3B in the central region of the placenta (P = 0.0046). Within the obese patient group, LC3B levels were significantly decreased in the placentas of male fetuses compared to females (P < 0.0001). Adipocytes, compared to milky spots and vasculature, had lower levels of p62 (P = 0.0127) and LC3B (P = 0.003) in obese omenta and lower levels of LC3B in control omenta (P = 0.0071). CONCLUSION: Obesity leads to reduced placental autophagy in uncomplicated pregnancies; thus, changes in autophagy may be involved in the underlying mechanisms of obesity-related placental diseases of pregnancy.


Asunto(s)
Obesidad Materna , Autofagia , Índice de Masa Corporal , Femenino , Humanos , Masculino , Placenta , Placentación , Embarazo
6.
Cancer Cell Int ; 19: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30636931

RESUMEN

BACKGROUND: Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. METHODS: We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. RESULTS: Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. CONCLUSIONS: KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.

7.
Mol Carcinog ; 56(1): 75-93, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26878598

RESUMEN

Ovarian cancer is a leading cause of cancer-related death in women and the most lethal gynecological malignancy in the developed world. The morbidity and mortality of ovarian cancer underscore the need for novel treatment options. Artesunate (ART) is a well-tolerated anti-malarial drug that also has anti-cancer activity. In this study, we show that ART inhibited the in vitro growth of a panel of ovarian cancer cell lines, as well as the growth of ovarian cancer cells isolated from patients. Moreover, ART decreased tumor growth in vivo in a mouse model of ovarian cancer. ART-treated ovarian cancer cells showed a strong induction of reactive oxygen species (ROS) and reduced proliferation. ROS-dependent cell cycle arrest occurred in the G2/M phase whereas ROS-independent cell cycle arrest occurred in the G1 phase, depending on the concentration of ART to which ovarian cancer cells were exposed. The anti-proliferative effect of ART was associated with altered expression of several key cell cycle regulatory proteins, including cyclin D3, E2F-1, and p21, as well as inhibition of mechanistic target of rapamycin signaling. Exposure of ovarian cancer cells to higher concentrations of ART resulted in ROS-dependent DNA damage and cell death. Pretreatment of ovarian cancer cells with a pan-caspase inhibitor or ferroptosis inhibitor decreased but did not completely eliminate ART-mediated cytotoxicity, suggesting the involvement of both caspase-dependent and caspase-independent pathways of killing. These data show that ART has potent anti-proliferative and cytotoxic effects on ovarian cancer cells, and may therefore be useful in the treatment of ovarian cancer. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antimaláricos/uso terapéutico , Antineoplásicos/uso terapéutico , Artemisininas/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Ovario/efectos de los fármacos , Animales , Antimaláricos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Artesunato , Línea Celular Tumoral , Femenino , Fase G2/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Ovario/patología , Especies Reactivas de Oxígeno/metabolismo
8.
BMC Cancer ; 17(1): 594, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28854921

RESUMEN

BACKGROUND: Epithelial ovarian cancer exhibits extensive interpatient and intratumoral heterogeneity, which can hinder successful treatment strategies. Herein, we investigated the efficacy of an emerging oncolytic, Maraba virus (MRBV), in an in vitro model of ovarian tumour heterogeneity. METHODS: Four ovarian high-grade serous cancer (HGSC) cell lines were isolated and established from a single patient at four points during disease progression. Limiting-dilution subcloning generated seven additional subclone lines to assess intratumoral heterogeneity. MRBV entry and oncolytic efficacy were assessed among all 11 cell lines. Low-density receptor (LDLR) expression, conditioned media treatments and co-cultures were performed to determine factors impacting MRBV oncolysis. RESULTS: Temporal and intratumoral heterogeneity identified two subpopulations of cells: one that was highly sensitive to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-mediated oncolysis. We explored both intracellular and extracellular mechanisms influencing sensitivity to MRBV and identified that LDLR can partially mediate MRBV infection. LDLR expression, however, was not the singular determinant of sensitivity to MRBV among the HGSC cell lines and subclones. We verified that there were no apparent extracellular factors, such as type I interferon responses, contributing to MRBV resistance. However, direct cell-cell contact by co-culture of MRBV-resistant subclones with sensitive cells restored virus infection and oncolytic killing of mixed population. CONCLUSIONS: Our data is the first to demonstrate differential efficacy of an oncolytic virus in the context of both spatial and temporal heterogeneity of HGSC cells and to evaluate whether it will constitute a barrier to effective viral oncolytic therapy.


Asunto(s)
Neoplasias Glandulares y Epiteliales/patología , Virus Oncolíticos/fisiología , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Heterogeneidad Genética , Humanos , Neoplasias Glandulares y Epiteliales/virología , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/virología
9.
J Virol ; 88(7): 3653-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24403595

RESUMEN

UNLABELLED: Using mass spectrometry, we identified p190RhoGAP (p190) as a binding partner of human papillomavirus 16 (HPV16) E7. p190 belongs to the GTPase activating protein (GAP) family and is one of the primary GAPs for RhoA. GAPs stimulate the intrinsic GTPase activity of the Rho proteins, leading to Rho inactivation and influencing numerous biological processes. RhoA is one of the best-characterized Rho proteins and is specifically involved in formation of focal adhesions and stress fibers, thereby regulating cell migration and cell spreading. Since this is the first report that E7 associates with p190, we carried out detailed interaction studies. We show that E7 proteins from other HPV types also bind p190. Furthermore, we found that conserved region 3 (CR3) of E7 and the middle domain of p190 are important for this interaction. More specifically, we identified two residues in CR3 of E7 that are necessary for p190 binding and used mutants of E7 with mutations of these residues to determine the biological consequences of the E7-p190 interaction. Our data suggest that the interaction of E7 with p190 dysregulates this GAP and alters the actin cytoskeleton. We also found that this interaction negatively regulates cell spreading on a fibronectin substrate and therefore likely contributes to important aspects of the HPV life cycle or HPV-induced tumorigenesis. IMPORTANCE: This study identifies p190RhoGAP as a novel cellular binding partner for the human papillomavirus (HPV) E7 protein. Our study shows that a large number of different HPV E7 proteins bind p190RhoGAP, and it identifies regions in both E7 and p190RhoGAP which are important for the interaction to occur. This study also highlights the likelihood that the E7-p190RhoGAP interaction may have important biological consequences related to actin organization in the infected cell. These changes could be an important contributor to the viral life cycle and during progression to cancer in HPV-infected cells. Importantly, this work also emphasizes the need for further study in a field which has largely been unexplored as it relates to the HPV life cycle and HPV-induced transformation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/fisiología , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/metabolismo , Actinas/metabolismo , Línea Celular , Citoesqueleto/metabolismo , Análisis Mutacional de ADN , Humanos , Espectrometría de Masas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
10.
Carcinogenesis ; 35(9): 1951-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24562574

RESUMEN

Recent genomics analysis of the high-grade serous subtype of epithelial ovarian cancer (EOC) show aberrations in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway that result in upregulated signaling activity. Thus, the PI3K/AKT pathway represents a potential therapeutic target for aggressive high-grade EOC. We previously demonstrated that treatment of malignant ascites-derived primary human EOC cells and ovarian cancer cell lines with the allosteric AKT inhibitor Akti-1/2 induces a dormancy-like cytostatic response but does not reduce cell viability. In this report, we show that allosteric AKT inhibition in these cells induces cytoprotective autophagy. Inhibition of autophagy using chloroquine (CQ) alone or in combination with Akti-1/2 leads to a significant decrease in viable cell number. In fact, Akti-1/2 sensitizes EOC cells to CQ-induced cell death by exhibiting markedly reduced EC50 values in combination-treated cells compared with CQ alone. In addition, we evaluated the effects of the novel specific and potent autophagy inhibitor-1 (Spautin-1) and demonstrate that Spautin-1 inhibits autophagy in a Beclin-1-independent manner in primary EOC cells and cell lines. Multicellular EOC spheroids are highly sensitive to Akti-1/2 and CQ/Spautin-1 cotreatments, but resistant to each agent alone. Indeed, combination index analysis revealed strong synergy between Akti-1/2 and Spautin-1 when both agents were used to affect cell viability; Akti-1/2 and CQ cotreatment also displayed synergy in most samples. Taken together, we propose that combination AKT inhibition and autophagy blockade would prove efficacious to reduce residual EOC cells for supplying ovarian cancer recurrence.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Bencilaminas/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Quinoxalinas/farmacología , Regulación Alostérica , Ascitis/patología , Línea Celular Tumoral , Cloroquina/farmacología , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Humanos , Concentración 50 Inhibidora , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Esferoides Celulares/efectos de los fármacos
11.
Dev Dyn ; 242(6): 604-13, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23441061

RESUMEN

BACKGROUND: Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-ß) signaling but has also been implicated in the repression of retinoic acid signaling. RESULTS: We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. CONCLUSIONS: Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Proto-Oncogénicas/metabolismo , Tretinoina/metabolismo , Animales , Línea Celular , Cicloheximida/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Hibridación in Situ , Queratinocitos/citología , Ácido Retinoico 4-Hidroxilasa , Transducción de Señal , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo , Xenopus
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167312, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901649

RESUMEN

Epithelial ovarian cancer (EOC) is highly lethal due to its unique metastatic characteristics. EOC spheroids enter a non-proliferative state, with hypoxic cores and reduced oncogenic signaling, all of which contribute to tumour dormancy during metastasis. We investigated the metabolomic states of EOC cells progressing through the three steps to metastasis. Metabolomes of adherent, spheroid, and re-adherent cells were validated by isotopic metabolic flux analysis and mitochondrial functional assays to identify metabolic pathways that were previously unknown to promote EOC metastasis. Although spheroids were thought to exist in a dormant state, metabolomic analysis revealed an unexpected upregulation of energy production pathways in spheroids, accompanied by increased abundance of tricarboxylic acid (TCA) cycle and electron transport chain proteins. Tracing of 13C-labelled glucose and glutamine showed increased pyruvate carboxylation and decreased glutamine anaplerosis in spheroids. Increased reductive carboxylation suggests spheroids adjust redox homeostasis by shuttling cytosolic NADPH into mitochondria via isocitrate dehydrogenase. Indeed, we observed spheroids have increased respiratory capacity and mitochondrial ATP production. Relative to adherent cells, spheroids reduced serine consumption and metabolism, processes which were reversed upon spheroid re-adherence. The data reveal a distinct metabolism in EOC spheroids that enhances energy production by the mitochondria while maintaining a dormant state with respect to growth and proliferation. The findings advance our understanding of EOC metastasis and identify the TCA cycle and mitochondrional activity as novel targets to disrupt EOC metastasis, providing new approaches to treat advanced disease.

13.
J Ovarian Res ; 16(1): 70, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37038202

RESUMEN

Epithelial ovarian cancer (EOC) research has become more complex as researchers try to fully understand the metastatic process. Especially as we delve into the concept of tumour dormancy, where cells transition between proliferative and dormant states to survive during disease progression. Thus, the in vitro models used to conduct this research need to reflect this vast biological complexity. The innovation behind the many three-dimensional (3D) spheroid models has been refined to easily generate reproducible spheroids so that we may understand the various molecular signaling changes of cells during metastasis and determine therapeutic efficacy of treatments. This ingenuity was then used to develop the 3D ex vivo patient-derived organoid model, as well as multiple co-culture model systems for EOC research. Although, researchers need to continue to push the boundaries of these current models for in vitro and even in vivo work in the future. In this review, we describe the 3D models already in use, where these models can be developed further and how we can use these models to gain the most knowledge on EOC pathogenesis and discover new targeted therapies.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Esferoides Celulares , Línea Celular Tumoral , Carcinoma Epitelial de Ovario
14.
Sci Rep ; 13(1): 11424, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452087

RESUMEN

Ovarian high-grade serous carcinoma (HGSC) is a highly lethal malignancy for which early detection is a challenge and treatment of late-stage disease is ineffective. HGSC initiation involves exfoliation of fallopian tube epithelial (FTE) cells which form multicellular clusters called spheroids that colonize and invade the ovary. HGSC contains universal mutation of the tumour suppressor gene TP53. However, not all TP53 mutations are the same, as specific p53 missense mutants contain gain-of-function (GOF) properties that drive tumour formation. Additionally, the role of GOF p53 in spheroid-mediated spread is poorly understood. In this study, we developed and characterized an in vitro model of HGSC based on mutation of TP53 in mouse oviductal epithelial cells (OVE). We discovered increased bulk spheroid survival and increased anchorage-independent growth in OVE cells expressing the missense mutant p53R175H compared to OVE parental and Trp53ko cells. Transcriptomic analysis on spheroids identified decreased apoptosis signaling due to p53R175H. Further assessment of the apoptosis pathway demonstrated decreased expression of intrinsic and extrinsic apoptosis signaling molecules due to Trp53 deletion and p53R175H, but Caspase-3 activation was only decreased in spheroids with p53R175H. These results highlight this model as a useful tool for discovering early HGSC transformation mechanisms and uncover a potential anti-apoptosis GOF mechanism of p53R175H.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Ratones , Femenino , Humanos , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Ováricas/patología , Mutación con Ganancia de Función , Cistadenocarcinoma Seroso/patología
15.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986175

RESUMEN

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Ováricas , Femenino , Ratones , Animales , Humanos , Trompas Uterinas/metabolismo , Simvastatina/farmacología , Simvastatina/metabolismo , Simvastatina/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Ácido Mevalónico/metabolismo , Ácido Mevalónico/uso terapéutico , Células Epiteliales/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/patología
16.
Commun Biol ; 6(1): 1152, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957414

RESUMEN

Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical models that recapitulate human disease are critical to develop new therapeutic approaches. Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of non-malignant cell types but have expanded in number, varying in the cell type of origin, method for transformation, and ultimately, the properties of the tumours they produce. Here we have performed a comparative analysis of high-grade serous ovarian cancer models based on transcriptomic profiling of 22 cell line models, and intrabursal and intraperitoneal tumours from 12. Among cell lines, we identify distinct signalling activity, such as elevated inflammatory signalling in STOSE and OVE16 models, and MAPK/ERK signalling in ID8 and OVE4 models; metabolic differences, such as reduced glycolysis-associated expression in several engineered ID8 subclones; and relevant functional properties, including differences in EMT activation, PD-L1 and MHC class I expression, and predicted chemosensitivity. Among tumour samples, we observe increased variability and stromal content among intrabursal tumours. Finally, we predict differences in the microenvironment of ID8 models engineered with clinically relevant mutations. We anticipate that this work will serve as a valuable resource, providing new insight to help select models for specific experimental objectives.


Asunto(s)
Neoplasias Ováricas , Animales , Ratones , Humanos , Femenino , Neoplasias Ováricas/patología , Perfilación de la Expresión Génica , Transducción de Señal , Microambiente Tumoral/genética
17.
Carcinogenesis ; 33(1): 49-58, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22045027

RESUMEN

Epithelial ovarian cancer (EOC) metastasis is a direct contributor to high recurrence and low survival for patients with this disease. Metastasis in EOC occurs by cell exfoliation from the primary tumor into the fluid-filled peritoneal cavity, persistence of these cells as non-adherent multicellular aggregates or spheroids and reattachment of spheroids to form secondary lesions. We have recovered native spheroids from ascites fluid and demonstrated that EOC cells within these structures exhibit reduced proliferation, yet regain the capacity to attach and reinitiate cell division. To model this process in vitro for further investigation, primary EOC cells from patient peritoneal fluid were cultured under non-adherent conditions. Here we show that these cells naturally form spheroids resembling those observed in ascites. Spheroids exhibit reduced cell proliferation and a protein expression pattern consistent with cellular quiescence: specifically, decreased phospho-AKT and p45/SKP2 with a concomitant increase in p130/RBL2 and p27(Kip1). However, when spheroids are seeded to an adherent surface, reattachment occurs rapidly and is followed by reinitiation of AKT-dependent cell proliferation. These results were strikingly consistent among numerous clinical specimens and were corroborated in the EOC cell line OVCAR3. Therefore, our data reveal that EOC cells become quiescent when forming spheroids, but reactivate proliferative mechanisms upon attachment to a permissive substratum. Overall, this work utilizes a novel in vitro model of EOC metastasis that employs primary human EOC cells and introduces the important concept of reversible dormancy in EOC pathogenesis.


Asunto(s)
Ascitis/patología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esferoides Celulares/patología , Carcinoma Epitelial de Ovario , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Neoplasias Glandulares y Epiteliales/enzimología , Neoplasias Ováricas/enzimología , Fosforilación
18.
Gynecol Oncol ; 125(2): 441-50, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22306204

RESUMEN

OBJECTIVE: We propose that metastatic epithelial ovarian cancer (EOC) is a potential therapeutic target for the oncolytic agent, Myxoma virus (MYXV). METHODS: Primary EOC cells were isolated from patient ascites and cultured as adherent cells or in suspension using Ultra Low-Attachment dishes. MYXV expressing green fluorescent protein was used to infect cells and spheroids. Infection was monitored by fluorescence microscopy, viral titering and immunoblotting for M-T7 and M130 virus protein expression, and cell viability by alamarBlue assay. Akti-1/2 (5 µM) and rapamycin (20 nM) were used to assay the role of PI3K-AKT signaling in mediating MYXV infection. RESULTS: Ascites-derived EOC cells grown in adherent culture are effectively killed by MYXV infection. EOC cells grown in suspension to form three-dimensional EOC spheroids readily permit MYXV entry into cells, yet are protected from the cytopathic effects of late MYXV infection. Upon reattachment (to model secondary metastasis), EOC spheroids are re-sensitized to MYXV-mediated oncolysis. The critical determinant that facilitates efficient MYXV infection is the presence of an activated PI3K-AKT signaling pathway. Treatment with the specific AKT inhibitor Akti-1/2 reduces infection of monolayer EOC cells and spheroids. Direct infection of freshly-collected ascites demonstrated that 54.5% of patient samples were sensitive to MYXV-mediated oncolytic cell killing. We also demonstrate that factor(s) present in ascites may negatively impact MYXV infection and oncolysis of EOC cells, which may be due to a down-regulation in endogenous AKT activity. CONCLUSIONS: Differential activity of AKT serves as the mechanistic basis for regulating MYXV-mediated oncolysis of EOC spheroids during key steps of the metastatic program. In addition, we provide the first evidence that MYXV oncolytic therapy may be efficacious for a significant proportion of ovarian cancer patients with metastatic disease.


Asunto(s)
Myxoma virus/fisiología , Neoplasias Glandulares y Epiteliales/terapia , Proteína Oncogénica v-akt/metabolismo , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/terapia , Ascitis/patología , Carcinoma Epitelial de Ovario , Femenino , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Fluorescente/métodos , Myxoma virus/genética , Myxoma virus/metabolismo , Neoplasias Glandulares y Epiteliales/enzimología , Neoplasias Glandulares y Epiteliales/virología , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas
19.
Clin Exp Metastasis ; 39(2): 291-301, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34822024

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell-cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell-cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Adhesión Celular , Línea Celular Tumoral , Humanos , Integrinas/uso terapéutico , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Esferoides Celulares/metabolismo
20.
Cell Div ; 17(1): 2, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321751

RESUMEN

In cancer, dormancy refers to a clinical state in which microscopic residual disease becomes non-proliferative and is largely refractory to chemotherapy. Dormancy was first described in breast cancer where disease can remain undetected for decades, ultimately leading to relapse and clinical presentation of the original malignancy. A long latency period can be explained by withdrawal from cell proliferation (cellular dormancy), or a balance between proliferation and cell death that retains low levels of residual disease (tumor mass dormancy). Research into cellular dormancy has revealed features that define this state. They include arrest of cell proliferation, altered cellular metabolism, and unique cell dependencies and interactions with the microenvironment. These characteristics can be shared by dormant cells derived from disparate primary disease sites, suggesting common features exist between them.High-grade serous ovarian cancer (HGSOC) disseminates to locations throughout the abdominal cavity by means of cellular aggregates called spheroids. These growth-arrested and therapy-resistant cells are a strong contributor to disease relapse. In this review, we discuss the similarities and differences between ovarian cancer cells in spheroids and dormant properties reported for other cancer disease sites. This reveals that elements of dormancy, such as cell cycle control mechanisms and changes to metabolism, may be similar across most forms of cellular dormancy. However, HGSOC-specific aspects of spheroid biology, including the extracellular matrix organization and microenvironment, are obligatorily disease site specific. Collectively, our critical review of current literature highlights places where HGSOC cell dormancy may offer a more tractable experimental approach to understand broad principles of cellular dormancy in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA