Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077752

RESUMEN

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Asunto(s)
Bacterias/metabolismo , Desarrollo Embrionario , Feto/citología , Feto/microbiología , Leucocitos/citología , Adulto , Bacterias/genética , Bacterias/ultraestructura , Proliferación Celular , Células Dendríticas/metabolismo , Femenino , Feto/ultraestructura , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/ultraestructura , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Viabilidad Microbiana , Embarazo , Segundo Trimestre del Embarazo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Linfocitos T/citología
2.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853275

RESUMEN

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Asunto(s)
Antígenos CD34 , Hígado , Animales , Humanos , Antígenos CD34/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos NOD , Trasplante de Células Madre Hematopoyéticas , Ratones SCID , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/trasplante , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Sangre Fetal/citología , Melanoma/patología , Melanoma/inmunología
3.
J Vis Exp ; (200)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870304

RESUMEN

Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models. Sub-retinal injection is known to be an established method that has been used to deliver pharmaceutical compounds to the photoreceptor cells and retinal pigmented epithelial (RPE) layer of the eye due to its proximity to the target space. It has also been used to deliver adeno-associated viral vectors into the sub-retinal space to treat retinal diseases. The sub-retinal delivery of pharmaceutical compounds and cells in the murine model is challenging due to the constraint in the size of the murine eyeball. This protocol describes the detailed procedure for the preparation of hESC-derived photoreceptor progenitor cells for injection and the sub-retinal delivery technique of these cells in genetic retinitis pigmentosa mutant, rd10 mice. This approach allows cell therapy to the targeted area, in particular the outer nuclear layer of the retina, where diseases leading to photoreceptor degeneration occur.


Asunto(s)
Células Madre Embrionarias Humanas , Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Humanos , Animales , Conejos , Retina , Células Fotorreceptoras , Preparaciones Farmacéuticas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Front Med (Lausanne) ; 8: 603374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968947

RESUMEN

The recent coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2. COVID-19 was first reported in China (December 2019) and is now prevalent across the globe. Entry of severe acute respiratory syndrome coronavirus 2 into mammalian cells requires the binding of viral Spike (S) proteins to the angiotensin-converting enzyme 2 receptor. Once entered, the S protein is primed by a specialized serine protease, transmembrane serine protease 2 in the host cell. Importantly, besides the respiratory symptoms that are consistent with other common respiratory virus infections when patients become viremic, a significant number of COVID-19 patients also develop liver comorbidities. We explored whether a specific target cell-type in the mammalian liver could be implicated in disease pathophysiology other than the general deleterious response to cytokine storms. Here, we used single-cell RNA-seq to survey the human liver and identified potentially implicated liver cell-type for viral ingress. We analyzed ~300,000 single cells across five different (i.e., human fetal, healthy, cirrhotic, tumor, and adjacent normal) liver tissue types. This study reports on the co-expression of angiotensin-converting enzyme 2 and transmembrane serine protease 2 in a TROP2+ liver progenitor population. Importantly, we detected enrichment of this cell population in the cirrhotic liver when compared with tumor tissue. These results indicated that in COVID-19-associated liver dysfunction and cell death, a viral infection of TROP2+ progenitors in the liver might significantly impair liver regeneration in patients with liver cirrhosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA