Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 229, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373978

RESUMEN

Transcriptional Co-Activator with PDZ-Binding Motif (TAZ, also known as WWTR1) is a downstream effector of the Hippo pathway, involved in the regulation of organ regeneration and cell differentiation in processes such as development and regeneration. TAZ has been shown to play a tumor-promoting role in various cancers. Currently, many studies focus on the role of TAZ in the process of mitophagy. However, the molecular mechanism and biological function of TAZ in renal clear cell carcinoma (KIRC) are still unclear. Therefore, we systematically analyzed the mRNA expression profile and clinical data of KIRC in The Cancer Genome Atlas (TCGA) dataset. We found that TAZ expression was significantly upregulated in KIRC compared with normal kidney tissue and was closely associated with poor prognosis of patients. Combined with the joint analysis of 36 mitophagy genes, it was found that TAZ was significantly negatively correlated with the positive regulators of mitophagy. Finally, our results confirmed that high expression of TAZ in KIRC inhibits mitophagy and promotes KIRC cell proliferation. In conclusion, our findings reveal the important role of TAZ in KIRC and have the potential to be a new target for KIRC therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Mitofagia , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proliferación Celular/genética , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Mitofagia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética
2.
Ecotoxicol Environ Saf ; 221: 112420, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166935

RESUMEN

Antimony is one of the heavier pnictogens and is widely found in human food chains, water sources, and as an air pollutant. Recent years have seen steadily increasing concentrations of antimony in the ecological environment; critically, several studies have indicated that antimony might pose a tumorigenic risk factor in several cancers. Therefore, antimony toxicity has attracted increasing research attention, with the molecular mechanisms underlying suspected antimony-mediated tumor transformation of greatest interest. Our results showed that the serum concentration of antimony was higher in bladder tumor patients relative to levels in non-tumor patients. Moreover, that such high antimony serum concentration were closely associated with poorer outcome in bladder tumor patients. Additionally, we demonstrated that the presence of antimony promoted both in vitro and in vivo bladder tumor cell growth. Our results also indicated that low-dose antimony resulted in significantly decreased mitochondrial membrane potential, mitochondrial respiratory enzyme complex I/II/III/IV activity, ATP/ADP ratio, and ATP concentration relative to the control group. These findings suggested that antimony caused mitochondrial damage. Finally, we found that low-dose antimony(0.8uM) inhibited mitophagy by deregulating expression of PINK1, Parkin, and p(ser65)-Parkin, and activation of PINK1-Parkin pathway by CCCP could inhibit antimony-induced tumor cell growth. Collectively, this inhibited the proliferation of bladder tumor cells. Overall, our study suggested that antimony promoted bladder tumor cell growth by inhibiting PINK1-Parkin-mediated mitophagy. These findings highlight the therapeutic potential in targeting molecules within this antimony induced-PINK1/Parkin signaling pathway and may offer a new approach for the treatment of bladder cancer.


Asunto(s)
Antimonio/toxicidad , Contaminantes Ambientales/toxicidad , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Vejiga Urinaria , Animales , Antimonio/sangre , Línea Celular Tumoral , Contaminantes Ambientales/sangre , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Mitofagia/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/patología
3.
J Clin Med ; 12(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37568397

RESUMEN

Artificial intelligence has drawn more and more attention for both research and application in the field of medicine. It has considerable potential for urological cancer detection, therapy, and prognosis prediction due to its ability to choose features in data to complete a particular task autonomously. Although the clinical application of AI is still immature and faces drawbacks such as insufficient data and a lack of prospective clinical trials, AI will play an essential role in individualization and the whole management of cancers as research progresses. In this review, we summarize the applications and studies of AI in major urological cancers, including tumor diagnosis, treatment, and prognosis prediction. Moreover, we discuss the current challenges and future applications of AI.

4.
Chemosphere ; 339: 139716, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562508

RESUMEN

Antimony (Sb) is a typical environmental pollutant. With the development of industrialization, antimony is widely used in daily life and enters the human body through the food chain, water source, air pollution, and other channels. The risk of antimony exposure has emerged as one of the public's major health concerns. Current research on antimony shows that antimony has certain biological toxicity, and antimony exposure may be one of the carcinogenic risk factors for bladder cancer, prostate cancer (PCa), and other cancers. But the molecular mechanism of antimony exposure in PCa is still unclear. Our results showed that serum antimony levels were significantly higher in PCa patients than in benign prostatic hyperplasia (BPH), and high levels of serum antimony were associated with poorer prognosis in PCa. We demonstrate that antimony exposure promotes PCa progression in vivo and in vitro. In addition, our results also showed that low-dose antimony exposure resulted in increased GSH, increased GPX4 expression, and decreased Fe2+. Since GPX4 and Fe2+ are important molecular features in the mechanism of ferroptosis, we further found that low-dose antimony exposure can inhibit RSL3-induced ferroptosis and promote PCa proliferation. Finally, our study demonstrates that low-dose antimony exposure promotes Nrf2 expression, increases the expression level of SLC7A11, and then increases the expression of GPX4, inhibits ferroptosis, and promotes PCa progression. Taken together, our experimental results suggest that low-dose antimony exposure promotes PCa cell proliferation by inhibiting ferroptosis through activation of the Nrf2-SLC7A11-GPX4 pathway. These findings highlight the link between low-dose antimony exposure and the Nrf2-SLC7A11-GPX4 ferroptosis pathway, providing a new potential direction for the prevention and treatment of PCa.


Asunto(s)
Ferroptosis , Neoplasias de la Próstata , Masculino , Humanos , Antimonio/toxicidad , Factor 2 Relacionado con NF-E2 , Neoplasias de la Próstata/inducido químicamente , Proliferación Celular , Sistema de Transporte de Aminoácidos y+
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA