Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(7): e2200814, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36459585

RESUMEN

Excessive exudate secreted from diabetic wounds often results in skin overhydration, severe infections, and secondary damage upon dressing changes. However, conventional wound dressings are difficult to synchronously realize the non-maceration of wound sites and rapid exudate transport due to their random porous structure. Herein, a self-pumping Janus hydrogel with aligned channels (JHA) composed of hydrophilic poly (ethylene glycol) diacrylate (PEGDA) hydrogel layer and hydrophobic polyurethane (PU)/graphene oxide (GO)/polytetrafluoroethylene (PTFE) layer is designed to rapidly export exudate and accelerate diabetic wound healing. In the design, the ice-templating process endows the hydrophilic hydrogel layer with superior liquid transport ability and mechanical strength due to the formation of aligned channel structure. The hydrophobic layer with controlled thickness functions as an effective barrier to prevent exudate from wetting the skin surface. Experiments in diabetic rat model show that JHA can significantly promote re-epithelialization and collagen deposition, shorten the inflammation phase, and accelerate wound healing. This unique JHA dressing may have great potential for real-life usage in clinical patients.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Ratas , Animales , Hidrogeles/química , Cicatrización de Heridas , Piel
2.
Adv Mater ; 36(25): e2401539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549454

RESUMEN

Viscous biofluids on wounds challenge conventional "water-absorbing" wound dressings in efficient drainage due to their poor fluidity, generally causing prolonged inflammation, anti-angiogenesis, and delayed wound closure. Herein, it is reported that a self-pumping organohydrogel dressing (SPD) with aligned hydrated hydrogel channels, prepared by a three-dimensional-templated wetting-enabled-transfer (3D-WET) polymerization process, can efficiently drain viscous fluids and accelerate diabetic wound healing. The asymmetric wettability of the hydrophobic-hydrophilic layers and aligned hydrated hydrogel channels enable unidirectional and efficient drainage of viscous fluids away from the wounds, preventing their overhydration and inflammatory stimulation. The organogel layer can adhere onto the skin around the wounds but can be easily detached from the wet wound area, avoiding secondary trauma to the newly formed tissues. Taking a diabetic rat model as an example, the SPD can significantly downregulate the inflammation response by ≈70.8%, enhance the dermal remodeling by ≈14.3%, and shorten wound closure time by about 1/3 compared with the commercial dressing (3M, Tegaderm hydrocolloid thin dressing). This study sheds light on the development of the next generation of functional dressings for chronic wounds involving viscous biofluids.


Asunto(s)
Vendajes , Diabetes Mellitus Experimental , Hidrogeles , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Hidrogeles/química , Ratas , Diabetes Mellitus Experimental/terapia , Viscosidad , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Piel , Ratas Sprague-Dawley
3.
Front Bioeng Biotechnol ; 11: 1188782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082216

RESUMEN

Massive exudates oversecreted from burn wounds always delay the healing process, accompanied by undesired adhesion, continuous inflammation, and high infection risk. Conventional dressings with limited draining ability cannot effectively remove the excessive exudates but constrain them in the wetted dressings immersing the wound bed. Herein, we fabricate an enhanced fractal self-pumping dressing by floating and accumulating hollow glass microspheres in the hydrogel precursor, that can continuously drain water at a non-declining high speed and effectively promote burn wound healing. Small hollow glass microspheres can split the fractal microchannels into smaller ones with higher fractal dimensions, resulting in higher absorption efficiency. In an in vivo burn wound model on the dorsum of murine, the enhanced fractal self-pumping dressing can significantly reduce the appearance of the wound area and alleviate tissue edema along the healing process. This study sheds light on designing high-efficiency and continuous-draining dressings for clinical applications.

4.
Adv Mater ; 35(38): e2301765, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37318249

RESUMEN

Burn wounds pose great challenges for conventional dressings because massive exudates oversecreted from swollen tissues and blisters seriously delay wound healing. Herein, a self-pumping organohydrogel dressing with hydrophilic fractal microchannels is reported that can rapidly drain excessive exudates with ≈30 times enhancement in efficiency compared with the pure hydrogel, and effectively promote burn wound healing. A creaming-assistant emulsion interfacial polymerization approach is proposed to create the hydrophilic fractal hydrogel microchannels in the self-pumping organohydrogel through a dynamic floating-colliding-coalescing process of organogel precursor droplets. In a murine burn wound model, the rapid self-pumping organohydrogel dressings can markedly reduce dermal cavity by ≈42.5%, accelerate blood vessel regeneration by ≈6.6 times, and hair follicle regeneration by ≈13.5 times, compared with the commercial dressing (Tegaderm). This study paves an avenue for designing high-performance functional burn wound dressings.


Asunto(s)
Quemaduras , Fractales , Ratones , Animales , Cicatrización de Heridas , Quemaduras/terapia , Vendajes , Hidrogeles
5.
Adv Mater ; 33(34): e2102348, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34279053

RESUMEN

Developing biotemplating techniques to translate microorganisms and cultured mammalian cells into metallic biocomposites is of great interest for biosensors, electronics, and energy. The metallization of viruses and microbial cells is successfully demonstrated via a genetic engineering strategy or electroless deposition. However, it is difficult to transform mammalian cells into metallic biocomposites because of the complicated genes and the delicate morphological features. Herein, "polymer-assisted cell metallization" (PACM) is reported as a general method for the transformation of mammalian cells into metallic biocomposites. PACM includes a first step of in situ polymerization of functional polymer on the surface and in the interior of the mammalian cells, and a subsequent electroless deposition of metal to convert the polymer-functionalized cells into metallic biocomposites, which retain the micro- and nanostructures of the mammalian cells. This new biotemplating method is compatible with different cell types and metals to yield a wide variety of metallic biocomposites with controlled structures and properties.


Asunto(s)
Materiales Biocompatibles/química , Metales/química , Polímeros/química , Animales , Sitios de Unión , Cobre/química , Electroquímica , Electrónica , Oro/química , Células HeLa , Humanos , Ratones , Microscopía Confocal , Nanoestructuras/química , Níquel/química , Escifozoos , Plata/química , Propiedades de Superficie
6.
Adv Mater ; 33(14): e2007301, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33660351

RESUMEN

Conventional adhesives often encounter interfacial failure in humid conditions due to small droplets of water condensed on surface, but spider silks can capture prey in such environment. Here a robust spider-silk-inspired wet adhesive (SA) composed of core-sheath nanostructured fibers with hygroscopic adhesive nanosheath (poly(vinylpyrrolidone)) and supporting nanocore (polyurethane) is reported. The wet adhesion of the SA is achieved by a unique dissolving-wetting-adhering process of core-sheath nanostructured fibers, revealed by in situ observations at macro- and microscales. Further, the SA maintains reliable adhesion on wet and cold substrates from 4 to -196 °C and even tolerates splashing, violent shaking, and weight loading in liquid nitrogen (-196 °C), showing promising applicability in cryogenic environments. This study will provide an innovative route to design functional wet adhesives.

7.
ACS Nano ; 14(10): 12614-12620, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32852939

RESUMEN

The design of an intelligent nanofluidic system for regulating the transport of substances such as ions and molecules is significant for applications in biological sensing, drug delivery, and energy harvesting. However, the existing nanofluidic system faces challenges in terms of an uncontrollable transport speed for molecules and ions and also a complex preparation processes, low durability, and slow response rate. Herein, we demonstrate the use of a bioinspired ferrofluid-based nanofluid that can facilitate multilevel ultrafast-responsive ion and molecule transport with speed control. Specifically, we reversibly deform bulk ferrofluids using a magnet and wet/dewet the outer surface of superhydrophilic nanochannels for building a smart transport system. By changing the direction and strength of the external magnetic field, a speed control, ultrafast-responsive molecular transport (<0.1 s), and controlled current gating ratio are achieved owing to the different pattern changes of ferrofluids on the outer surface of nanochannels. We also illustrate a practical application of this strategy for antibacterial devices to control the transport of drug molecules in a programmed manner. These results suggest that molecule transport can be further complexified and quantified through an intelligent nanofluidic system.

8.
Adv Mater ; 31(5): e1804187, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30537340

RESUMEN

Excessive biofluid around wounds often causes infection and hinders wound healing. However, the intrinsic hydrophilicity of the conventional dressing inevitably retains excessive biofluid at the interface between the dressing and the wound. Herein, a self-pumping dressing is reported, by electrospinning a hydrophobic nanofiber array onto a hydrophilic microfiber network, which can unidirectionally drain excessive biofluid away from wounds and finally accelerate the wound healing process. The hydrophilic microfiber network offers a draining force to pump excessive biofluid through the hydrophobic nanofiber array, which can further keep those pumped biofluids from rewetting the wounds. In the proof of concept, the self-pumping dressing unidirectionally drains the biofluid from murine dorsum wounds, thereby resulting in faster wound healing than conventional dressings. This unique self-pumping dressing has enormous potential to be a next-generation dressing for healing wounds clinically.


Asunto(s)
Vendajes , Líquidos Corporales/química , Cicatrización de Heridas , Animales , Modelos Animales de Enfermedad , Diseño de Equipo , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanofibras/química , Nanofibras/uso terapéutico , Ratas , Ratas Sprague-Dawley , Plata/química , Piel/patología , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
9.
Adv Mater ; 31(41): e1904113, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31456222

RESUMEN

Excessive sweat secreted from the skin often causes undesired adhesion from wetted textiles and cold sensations. Traditional hydrophilic textiles such as cotton can absorb sweat but retain it. A hydrophobic/superhydrophilic Janus polyester/nitrocellulose textile embedded with a conical micropore array with a hydrophilic inner surface that can achieve directional liquid transport (with an ultrahigh directional water transport capability of 1246%) and maintain human body temperature (2-3 °C higher than with cotton textiles) is demonstrated. When the hydrophobic polyester layer with large opening of hydrophilic conical micropores contacts the liquid, the Janus polyester/nitrocellulose textile can pump it to the superhydrophilic nitrocellulose layer through the hydrophilic conical micropores driven by capillary force. The Janus polyester/nitrocellulose textile can weaken undesired wet adhesion and heat loss due to the removal of liquid. The water wicking and air permeability of the Janus polyester/nitrocellulose textile is comparable to those of traditional cloths. This study is valuable for designing of functional textiles with directional water transport properties for personal drying and warming applications.


Asunto(s)
Biomimética/instrumentación , Sudor , Temperatura , Textiles , Colodión/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Poliésteres/química , Porosidad
10.
ACS Appl Mater Interfaces ; 11(1): 1496-1502, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30561188

RESUMEN

Wearable devices have attracted a lot of attention because of their importance in the biomedical and electronic fields. However, as one of the important fixing materials, skin adhesives with controlled adhesion are often ignored. Although remarkable progress has been achieved in revealing the natural adhesion mechanism and biomimetic materials to complex solid surfaces, it remains a great challenge to explore nonirritant, controlled skin adhesives without surface structure. Herein, we present skin-adhesive patches of polydimethylsiloxanes (SAPs) with controlled adhesion by simply modulating polymer chain mobility at the molecular level. The controlled adhesion of SAPs strongly depends on the proportion of polymer chains with different mobility exposed to the solid surface, including free chains, dangling chains, and cross-linking chains. As a proof of concept, we demonstrate that the SAP can act as a skin-friendly fix to monitor the human pulse by integrating with the poly(vinylidene fluoride-trifluorethylene)/reduced graphene oxide (P(VDF-TrFE)@rGO) nanofiber sensor. This study provides a clue to design durable and skin-friendly adhesives with controlled adhesion for wearable devices.

11.
J Mater Chem B ; 5(20): 3758-3764, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32264064

RESUMEN

Human natural blood vessels have a three-layer structure including the tunica intima, tunica media, and tunica adventitia. These subtle structures endow healthy blood vessels with outstanding strength, elasticity, and compliance as well as excellent haemodynamic and anti-thrombus performance. Fabrication of a next generation vascular graft that mimics the structures and functions of natural blood vessels is becoming the pursuit of biomaterials and medical scientists. Here we fabricate a bio-inspired nanofiber three-layer vascular graft by electrospinning. The inner PLA/PCL layer is favorable for adhesion of human umbilical vein endothelial cells that could accelerate endothelialization. The middle PU/PCL layer provides superior mechanical properties (63.40 MPa, 266.78% in the longitudinal direction and 52.34 MPa, 319.72% in the lateral direction). The outer PLA/PCL layer with circumferentially aligned fibers is beneficial for guiding vascular smooth muscle cells in the circumferentially oriented direction. The bio-inspired three-layer vascular graft with strong mechanical properties and good cell biocompatibility will play an important role in vessel remodeling and regeneration.

12.
J Mater Chem B ; 3(5): 733-737, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262162

RESUMEN

Both implant centered infection and deficient osteoinduction are pivotal issues for orthopedic implants in early and long-term osseointegration, but constructing a functional bio-interface that can overcome these two problems is highly challenging. Our study reveals that a bio-interface with promoted positive charges plays an active role in simultaneously enhancing the antibacterial and osteoinductive capability of orthopedic implants. The positively charged bio-interface is fabricated by a simple dipping method, in which the cationic polymer (polyhexamethylene biguanidine, PHMB) is immobilized in the conjugated polydopamine coating. Mediated by the cation-π interaction, the immobilized PHMB elevates the surface potential resulting in excellent antibacterial efficacy corresponding to 5 ppm of free PHMB. The materials exhibit far better cytocompatibility than free PHMB at the dose which kills over 50% of the cells. Most importantly, the cationic surface can function as a bioelectrical microenvironment to guide bone mesenchymal stem cells and consequently, enhanced cellular viability and proliferation together with upregulated osteogenesis are achieved. The cation-π interaction mediated cationic surface overcomes the disadvantages plaguing the immobilized cationic antibacterial compounds prepared by other methods and is applicable to different types of biomedical materials requiring antibacterial and osteoinductive bio-interfaces.

13.
J Mater Chem B ; 3(9): 1856-1863, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262258

RESUMEN

Because of the complex plasma reactions and chemical structures of polymers, it is difficult to construct nitrogen functionalities controllably by plasma technology to attain the desirable biological outcome and hence, their effects on bone cells are sometimes ambiguous and even contradictory. In this study, argon plasma treatment is utilized to convert complex molecular chains into a pyrolytic carbon structure which possesses excellent cytocompatibility. The pyrolytic carbon then serves as a platform to prepare the desired nitrogen functionalities by nitrogen and hydrogen plasma immersion ion implantation. Primary, secondary, and tertiary amine groups can be produced selectively thus minimizing the chemical complexity and creation of multiple types of nitrogen functional groups that are often obtained by other fabrication methods. As a result of the excellent control of the nitrogen functionalities rendered by this plasma technique, the effects of individual nitrogen functionalities on the cytocompatibility and upregulation of bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis can be investigated systematically. The tertiary amine functionalities exhibit the optimal efficiency pertaining to the modulation of the biological response, enhancement of osteogenesis related gene/protein expression, and calcification of the contacted BMSCs. Our results demonstrate that simple plasma technology can be conveniently employed to create the desirable nitrogen functionalities on orthopedic polymers to facilitate osseointegration and mitigate foreign body reactions.

14.
Sci Rep ; 5: 9369, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25791957

RESUMEN

Positively-charged surfaces on implants have a similar potential to upregulate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) as electromagnetic therapy approved for bone regeneration. Generally, their osteogenesis functions are generally considered to stem from the charge-induced adhesion of extracellular matrix (ECM) proteins without exploring the underlying surface charge/cell signaling molecule pathways. Herein, a positively-charged surface with controllable tertiary amines is produced on a polymer implant by plasma surface modification. In addition to inhibiting the TNF-α expression, the positively-charged surface with tertiary amines exhibits excellent cytocompatibility as well as remarkably upregulated osteogenesis-related gene/protein expressions and calcification of the contacted BMSCs. Stimulated by the charged surface, these BMSCs display high iNOS expressions among the three NOS isoforms. Meanwhile, downregulation of the iNOS by L-Can or siRNA inhibit osteogenic differentiation in the BMSCs. These findings suggest that a positively-charged surface with tertiary amines induces osteogenesis of BMSCs via the surface charge/iNOS signaling pathway in addition to elevated ECM protein adhesion. Therefore, creating a positively-charged surface with tertiary amines is a promising approach to promote osseointegration with bone tissues.


Asunto(s)
Aminas/metabolismo , Células Madre Hematopoyéticas/citología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteogénesis , Polímeros/metabolismo , Transducción de Señal , Regulación hacia Arriba , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA