Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334327

RESUMEN

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Asunto(s)
Macrófagos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Transducción de Señal , Internalización del Virus , Animales , Endocitosis , Gangliósidos/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Proteínas de Unión al GTP rho/metabolismo
2.
J Virol ; 96(10): e0024122, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35510864

RESUMEN

In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Animales , Pollos/virología , China/epidemiología , Codón Iniciador , Comercio , Monitoreo Epidemiológico/veterinaria , Genotipo , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/genética , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Virulencia/genética
3.
J Virol ; 95(13): e0228820, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762417

RESUMEN

The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.


Asunto(s)
Endocitosis/fisiología , Macrófagos/virología , Enfermedad de Newcastle/transmisión , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Caveolas/metabolismo , Línea Celular , Embrión de Pollo , Pollos , Dinaminas/metabolismo , Concentración de Iones de Hidrógeno , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab5/genética
4.
Arch Virol ; 165(9): 2003-2011, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32594321

RESUMEN

Porcine circovirus 3 (PCV3) is a recently identified virus that is associated with reproductive failure, porcine dermatitis and nephropathy syndrome, and multi-systemic inflammation. To investigate the molecular epidemic characteristics and genetic evolution of PCV3 in northern China, a commercial TaqMan-based real-time quantitative PCR kit was used to detect PCV3 in 435 tissue specimens collected from pigs with various clinical signs from 105 different swine farms in northern China. The results showed that 48 out of 105 (45.7%) farms and 97 out of 435 (22.3%) samples tested positive for PCV3. Of the 97 PCV3-positive samples, 80 (82.5%) tested positive for other pathogens. PCV3 was found more frequently in pigs with reproductive failure than in those with other clinical signs. This study is the first to detect PCV3 in Tianjin. The complete genome sequences of six PCV3 isolates and the capsid (Cap) protein gene sequences of 11 isolates were determined. Based on the predicted amino acids at positions 24 and 27 of the Cap protein and their evolutionary relationships, the 17 PCV3 strains obtained from northern China and 49 reference strains downloaded from the GenBank database were divided into four major groups (3a-3d). An analysis of selection pressure and polymorphism indicated that the PCV3 Cap protein seems to be evolving under balancing selection, that the population is in dynamic equilibrium, and that no population expansion occurred during the study period. Our results provide new information about the molecular epidemiology and evolution of PCV3.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/clasificación , Circovirus/aislamiento & purificación , Filogenia , Enfermedades de los Porcinos/virología , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , China/epidemiología , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Circovirus/genética , Epidemiología Molecular , Porcinos , Enfermedades de los Porcinos/epidemiología
5.
Arch Virol ; 164(9): 2351-2354, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31222429

RESUMEN

Porcine bocavirus (PBoV), which belongs the genus Bocaparvovirus, has been identified throughout the world. However, serological methods for detecting anti-PBoV antibodies are presently limited. In the present study, an indirect enzyme-linked immunosorbent assay (PBoV-rNP1 ELISA) based on a recombinant form of nucleoprotein 1 (NP1) of PBoV was established for investigating the seroprevalence of PBoV in 2025 serum specimens collected in north-central China from 2016 to 2018, and 42.3% of the samples tested positive for anti-PBoV IgG antibodies, indicating that the seroprevalence of PBoV is high in pig populations in China.


Asunto(s)
Anticuerpos Antivirales/sangre , Bocavirus/aislamiento & purificación , Nucleoproteínas/inmunología , Infecciones por Parvoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/inmunología , Bocavirus/clasificación , Bocavirus/genética , China/epidemiología , Ensayo de Inmunoadsorción Enzimática , Nucleoproteínas/genética , Infecciones por Parvoviridae/sangre , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/virología , Filogenia , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA