RESUMEN
During the drug discovery and design process, the acid-base dissociation constant (pKa) of a molecule is critically emphasized due to its crucial role in influencing the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and biological activity. However, the experimental determination of pKa values is often laborious and complex. Moreover, existing prediction methods exhibit limitations in both the quantity and quality of the training data, as well as in their capacity to handle the complex structural and physicochemical properties of compounds, consequently impeding accuracy and generalization. Therefore, developing a method that can quickly and accurately predict molecular pKa values will to some extent help the structural modification of molecules, and thus assist the development process of new drugs. In this study, we developed a cutting-edge pKa prediction model named GR-pKa (Graph Retention pKa), leveraging a message-passing neural network and employing a multi-fidelity learning strategy to accurately predict molecular pKa values. The GR-pKa model incorporates five quantum mechanical properties related to molecular thermodynamics and dynamics as key features to characterize molecules. Notably, we originally introduced the novel retention mechanism into the message-passing phase, which significantly improves the model's ability to capture and update molecular information. Our GR-pKa model outperforms several state-of-the-art models in predicting macro-pKa values, achieving impressive results with a low mean absolute error of 0.490 and root mean square error of 0.588, and a high R2 of 0.937 on the SAMPL7 dataset.
Asunto(s)
Redes Neurales de la Computación , Termodinámica , Descubrimiento de Drogas/métodosRESUMEN
Ischemic stroke (IS) is a significant and potentially life-threatening disease with limited treatment options, often resulting in severe disability. Bone marrow stromal cells (BMSCs) transplantation has exhibited promising neuroprotection following cerebral ischemia-reperfusion injury (CIRI). However, the effectiveness is hindered by their low homing rate when administered through the vein. In this study, we aimed to enhance the homing ability of BMSCs through lentivirus transfection to express fucosyltransferase 7. This glycosylation engineered CD44 on BMSCs to express hematopoietic cell E-selectin/L-selectin ligand (HCELL), which is the most potent E-selectin ligand. Following enforced HCELL expression, the transplantation of BMSCs was then evaluated in a middle cerebral artery occlusion (MCAO) model. Results showed that HCELL+BMSCs significantly ameliorated neurological deficits and reduced the volume of cerebral infarction. Furthermore, the transplantation led to a decrease in apoptosis by up-regulating BCL-2 and down-regulating BAX, also reduced the mRNA levels of inflammatory factors, such as interleukin-1ß (IL-1ß), IL-2, IL-6 and tumor necrosis factor-alpha (TNF-α) in the ischemic brain tissue. Notably, enforced HCELL expression facilitated the migration of BMSCs towards cerebral ischemic lesions and their subsequent transendothelial migration through the up-regulation of PTGS-2, increased production of PGE2 and activation of VLA-4. In summary, our study demonstrates that transplantation of HCELL+BMSCs effectively alleviates CIRI, and that enforced HCELL expression enhances the homing of BMSCs to cerebral ischemic lesions and their transendothelial migration via PTGS-2/PGE2/VLA-4. These findings indicate that enforced expression of HCELL on BMSCs could serve as a promising therapeutic strategy for the treatment of ischemic stroke.
RESUMEN
High-throughput circular RNA (circRNA) sequencing identified circRNA_001678 (circ_001678) as an upregulated circRNA in non-small cell lung cancer (NSCLC) tissues. Hence, the current study sought to investigate the function and the underlying mechanism of circRNA_001678 in immune escape of NSCLC. Briefly, commercially purchased NSCLC cell lines were adopted for in vitro experiment to evaluate the effects of circ_001678 over-expression or knockdown on cell biological functions, including proliferation, migration and invasive abilities. In addition, the effects of circ_001678 on the in vivo tumorigenicity ability were evaluated for verification. Accordingly, we uncovered that circ_001678 over-expression augmented NSCLC progression in vitro and enhanced tumorigenicity ability in vivo. The interaction between circ_001678 and miR-326 predicted online was verified by means of luciferase and RNA pull-down assays. Furthermore, circ_001678 could sponge miR-326 to up-regulate ZEB1. On the other hand, the tumor-promoting effects of circ_001678 could be inhibited by anti-PD-L1/PD-1 treatment. Mechanistically, circ_001678 led to the activation of the PD-1/PD-L1 pathway to promote CD8+ T cell apoptosis, thereby inducing NSCLC cell immune escape via regulation of the miR-326/ZEB1 axis. To conclude, our findings revealed that circ_001678 sponges miR-326 to up-regulate ZEB1 expression and induce the PD-1/PD-L1 pathway-dependent immune escape, thereby promoting the malignant progression of NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptor de Muerte Celular Programada 1/genética , ARN Circular/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Proliferación Celular/genética , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genéticaRESUMEN
BACKGROUND: Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative frozen pathology diagnosis, which provides important information for precision operation. As digital whole slide images (WSIs) develop, deep learning methods for histopathological classification of the thyroid gland (paraffin sections) have achieved outstanding results. Our current study is to clarify whether deep learning assists pathology diagnosis for intraoperative frozen thyroid lesions or not. METHODS: We propose an artificial intelligence-assisted diagnostic system for frozen thyroid lesions that applies prior knowledge in tandem with a dichotomous judgment of whether the lesion is cancerous or not and a quadratic judgment of the type of cancerous lesion to categorize the frozen thyroid lesions into five categories: papillary thyroid carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma, follicular thyroid tumor, and non-cancerous lesion. We obtained 4409 frozen digital pathology sections (WSI) of thyroid from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) to train and test the model, and the performance was validated by a six-fold cross validation, 101 papillary microcarcinoma sections of thyroid were used to validate the system's sensitivity, and 1388 WSIs of thyroid were used for the evaluation of the external dataset. The deep learning models were compared in terms of several metrics such as accuracy, F1 score, recall, precision and AUC (Area Under Curve). RESULTS: We developed the first deep learning-based frozen thyroid diagnostic classifier for histopathological WSI classification of papillary carcinoma, medullary carcinoma, follicular tumor, anaplastic carcinoma, and non-carcinoma lesion. On test slides, the system had an accuracy of 0.9459, a precision of 0.9475, and an AUC of 0.9955. In the papillary carcinoma test slides, the system was able to accurately predict even lesions as small as 2 mm in diameter. Tested with the acceleration component, the cut processing can be performed in 346.12 s and the visual inference prediction results can be obtained in 98.61 s, thus meeting the time requirements for intraoperative diagnosis. Our study employs a deep learning approach for high-precision classification of intraoperative frozen thyroid lesion distribution in the clinical setting, which has potential clinical implications for assisting pathologists and precision surgery of thyroid lesions.
Asunto(s)
Aprendizaje Profundo , Secciones por Congelación , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/cirugía , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/cirugía , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Carcinoma Papilar/diagnóstico , Adenocarcinoma Folicular/patología , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/cirugía , Glándula Tiroides/patología , Glándula Tiroides/cirugía , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/diagnóstico , Carcinoma Neuroendocrino/cirugía , Femenino , Masculino , Persona de Mediana Edad , Adulto , Periodo Intraoperatorio , Carcinoma Anaplásico de Tiroides/patología , Carcinoma Anaplásico de Tiroides/diagnóstico , Carcinoma Anaplásico de Tiroides/cirugíaRESUMEN
BACKGROUND AND AIMS: Sarcopenia is a disease characterized by loss of skeletal muscle mass and function that is closely associated with cardiovascular disease. The serum creatinine/cystatin C (Cr/CysC) ratio has been shown to be a simplified indicator for identifying low muscle mass (LMM) or sarcopenia. The aim of this study was to investigate whether the Cr/CysC ratio helps to predict prognostic information in hypertensive patients. METHODS AND RESULTS: This cohort study included 2509 patients with hypertension from the National Health and Nutrition Survey 1999-2002. To evaluate the association between Cr/CysC ratio and mortality, we used Kaplan Meier estimates to calculate cumulative survival probabilities for all-cause mortality and cardiovascular mortality, Cox regression analyses, and hazard ratio (HR) and 95% confidence interval (CI) were calculated. Over a median follow-up of 11.76 years, lower Cr/CysC ratio was associated with lower risk of all-cause mortality (per 0.1 increase, HR:0.81, 95% CI: 0.77-0.85, P < 0.001) and cardiovascular mortality (per 0.1 increase, HR:0.80, 95% CI: 0.72-0.89, P < 0.001). Compared with patients with normal muscle mass, all-cause mortality, and cardiovascular mortality HR for patients with LMM diagnosed by Cr/CysC ratio were 1.57 (95% CI: 1.36-1.82, P < 0.001) and 1.64 (95% CI: 1.12-2.42, P = 0.012), respectively. CONCLUSION: We found that low muscle mass shown by lower Cr/CysC ratio was an independent risk factor for poor prognosis in hypertensive patients. We recommend routine screening of Cr/CysC ratio in hypertensive patients and early intervention for low muscle mass or sarcopenia.
Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Sarcopenia , Humanos , Estudios de Cohortes , Creatinina/metabolismo , Cistatina C , Hipertensión/diagnóstico , Sarcopenia/diagnósticoRESUMEN
BACKGROUND: Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS: Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS: These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.
Asunto(s)
Vesículas Extracelulares , Ratones Endogámicos C57BL , ATPasas de Translocación de Protón Mitocondriales , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Ferroptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
A smartphone-based electrochemical aptasensing platform was developed for the point-of-care testing (POCT) of carcinoembryonic antigen (CEA) based on the ferrocene (Fc) and PdPt@PCN-224 dual-signal labeled strategy. The prepared PdPt@PCN-224 nanocomposite showed a strong catalytic property for the reduction of H2O2. Phosphate group-labeled aptamer could capture PdPt@PCN-224 by Zr-O-P bonds to form PdPt@PCN-224-P-Apt. Therefore, a dual signal labeled probe was formed by the hybridization between Fc-DNA and PdPt@PCN-224-P-Apt. The presence of CEA forced PdPt@PCN-224-P-Apt to leave the electrode surface due to the specific affinity, leading to the decrease of the reduction current of H2O2. At the same time, the Fc-DNA strand changed to hairpin structure, which made Fc closer to the electrode and resulted in the increase of the oxidation current of Fc. Thus, CEA can be accurately determined through both signals: the decrease of H2O2 reduction current and the increase of Fc oxidation current, which could avoid the false positive signal. Under the optimal conditions, the prepared aptasensor exhibited a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 and low detection limits of 0.98 pg·mL-1 and 0.27 pg·mL-1 with Fc and PdPt@PCN-224 as signal labels, respectively. The aptasensor developed in this study has successfully demonstrated its capability to detect CEA in real human serum samples. These findings suggest that the proposed sensing platform will hold great potential for clinical tumor diagnosis and monitoring.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Compuestos Ferrosos , Peróxido de Hidrógeno , Límite de Detección , Paladio , Pruebas en el Punto de Atención , Teléfono Inteligente , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Paladio/química , Compuestos Ferrosos/química , Metalocenos/química , Platino (Metal)/químicaRESUMEN
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Exosomas/metabolismo , Ratones Desnudos , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Carcinogénesis/patologíaRESUMEN
BACKGROUND: The associations of vitamin C intake with colorectal cancer (CRC) survival according to tumour KRAS or BRAF mutation status remain unclear. METHODS: We used the inverse probability weighted multivariable Cox proportional hazards regression model to calculate the hazard ratio (HR) of mortality, and spline analysis to evaluate the dose-response relationship in the Nurses' Health Study and Health Professionals Follow-up Study. We also assessed SLC2A1 mRNA expression according to KRAS or BRAF mutation in the TCGA database. RESULTS: During an average of 12.0 years of follow-up, we documented 2,096 CRC cases, of which 703 cases had KRAS and BRAF mutation data. The association between total vitamin C intake and CRC-specific mortality suggestively differed according to KRAS or BRAF mutation status (Pinteraction = 0.04), with the multivariable HR (95% CI) per 400 mg/day increase in vitamin C intake for CRC-specific mortality of 1.07 (0.87-1.32, Ptrend = 0.52) in cases with both wild type and 0.74 (0.55-1.00, Ptrend < 0.05) in cases with either KRAS or BRAF mutant type. TCGA analysis showed a higher mRNA SLC2A1 expression in KRAS or BRAF-mutated tumours than in wild-type tumours (P = 0.02). CONCLUSION: Our findings support the laboratory evidence for a potential benefit of vitamin C for CRC patients with KRAS or BRAF mutated tumours.
Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estudios de Seguimiento , Neoplasias Colorrectales/patología , Mutación , ARN MensajeroRESUMEN
BACKGROUND & AIMS: Evidence supports a carcinogenic role of Escherichia coli carrying the pks island that encodes enzymes for colibactin biosynthesis. We hypothesized that the association of the Western-style diet (rich in red and processed meat) with colorectal cancer incidence might be stronger for tumors containing higher amounts of pks+E coli. METHODS: Western diet score was calculated using food frequency questionnaire data obtained every 4 years during follow-up of 134,775 participants in 2 United States-wide prospective cohort studies. Using quantitative polymerase chain reaction, we measured pks+E coli DNA in 1175 tumors among 3200 incident colorectal cancer cases that had occurred during the follow-up. We used the 3200 cases and inverse probability weighting (to adjust for selection bias due to tissue availability), integrated in multivariable-adjusted duplication-method Cox proportional hazards regression analyses. RESULTS: The association of the Western diet score with colorectal cancer incidence was stronger for tumors containing higher levels of pks+E coli (Pheterogeneity = .014). Multivariable-adjusted hazard ratios (with 95% confidence interval) for the highest (vs lowest) tertile of the Western diet score were 3.45 (1.53-7.78) (Ptrend = 0.001) for pks+E coli-high tumors, 1.22 (0.57-2.63) for pks+E coli-low tumors, and 1.10 (0.85-1.42) for pks+E coli-negative tumors. The pks+E coli level was associated with lower disease stage but not with tumor location, microsatellite instability, or BRAF, KRAS, or PIK3CA mutations. CONCLUSIONS: The Western-style diet is associated with a higher incidence of colorectal cancer containing abundant pks+E coli, supporting a potential link between diet, the intestinal microbiota, and colorectal carcinogenesis.
Asunto(s)
Neoplasias Colorrectales , Infecciones por Escherichia coli , Carcinogénesis , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Dieta Occidental , Escherichia coli/genética , Humanos , Estudios Prospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)RESUMEN
Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tetrapirroles/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , HomeostasisRESUMEN
The need to identify a missing person (MP) through kinship analysis of DNA samples found at a crime scene has become increasingly prevalent. DNA samples from MPs can be severely degraded, contain little DNA and mixed with other contributors, which often makes it difficult to apply conventional methods in practice. This study developed a massively parallel sequencing-based panel that contains 1661 single-nucleotide polymorphisms (SNPs) with low minor allele frequencies (MAFs) (averaged at 0.0613) in the Chinese Han population, and the strategy for relationship inference from DNA mixtures comprising different numbers of contributors (NOCs) and of varying allele dropout probabilities. Based on the simulated dataset and genotyping results of 42 artificial DNA mixtures (NOC = 2-4), it was observed that the present SNP panel was sufficient for balanced mixtures when referenced to the closest relatives (parents/offspring and full siblings). When the mixture profiles suffered from dropout, incorrect assignments were markedly associated with relatedness, NOC and the dropout level. We, therefore, indicate that SNPs with low MAFs could be reliably interpreted for MP identification through the kinship analysis of complex DNA mixtures. Further studies should be extended to more possible scenarios to test the feasibility of this present approach.
RESUMEN
BACKGROUND: The triglyceride-glucose (TyG) index is a reliable alternative biomarker of insulin resistance (IR). However, whether the TyG index has prognostic value in critically ill patients with coronary heart disease (CHD) remains unclear. METHODS: Participants from the Medical Information Mart for Intensive Care III (MIMIC-III) were grouped into quartiles according to the TyG index. The primary outcome was in-hospital all-cause mortality. Cox proportional hazards models were constructed to examine the association between TyG index and all-cause mortality in critically ill patients with CHD. A restricted cubic splines model was used to examine the associations between the TyG index and outcomes. RESULTS: A total of 1,618 patients (65.14% men) were included. The hospital mortality and intensive care unit (ICU) mortality rate were 9.64% and 7.60%, respectively. Multivariable Cox proportional hazards analyses indicated that the TyG index was independently associated with an elevated risk of hospital mortality (HR, 1.71 [95% CI 1.25-2.33] P = 0.001) and ICU mortality (HR, 1.50 [95% CI 1.07-2.10] P = 0.019). The restricted cubic splines regression model revealed that the risk of hospital mortality and ICU mortality increased linearly with increasing TyG index (P for non-linearity = 0.467 and P for non-linearity = 0.764). CONCLUSIONS: The TyG index was a strong independent predictor of greater mortality in critically ill patients with CHD. Larger prospective studies are required to confirm these findings.
Asunto(s)
Enfermedad Coronaria , Enfermedad Crítica , Masculino , Humanos , Femenino , Cuidados Críticos , Enfermedad Coronaria/diagnóstico , Glucosa , Triglicéridos , Glucemia , Biomarcadores , Factores de RiesgoRESUMEN
Background: Acute kidney injury (AKI) is a common complication after pediatric cardiac surgery. And autologous blood transfusion (ABT) is an important predictor of postoperative AKI. Unlike previous studies, which mainly focused on the correlation between ABT and AKI, the current study focuses heavily on the causal relationship between them, thus providing guidance for the treatment of patients during hospitalization to reduce the occurrence of AKI. Methods: A retrospective cohort of 3386 patients extracted from the Pediatric Intensive Care database was used for statistical analysis, multifactorial analysis, and causal inference. Characteristics that were correlated with ABT and AKI were categorized as confounders, instrumental variables, and effect modifiers, and were entered into the DoWhy causal inference model to determine causality. The calculated average treatment effect (ATE) was compared with the results of the multifactorial analysis. Results: The adjusted odds ratio (OR) for ABT volume was obtained by multifactorial analysis as 0.964. The DoWhy model refute test was able to indicate a causal relationship between ABT and AKI. Any ABT reduces AKI about 15.3%-18.8% by different estimation methods. The ATE regarding the amount of ABT was -0.0088, suggesting that every 1 mL/kg of ABT reduced the risk of AKI by 0.88%. Conclusions: Intraoperative transfusion of autologous blood can have a protective effect against postoperative AKI.
RESUMEN
Background: Left ventricular end-diastolic diameter (LVEDD) is a common parameter in echocardiography. Increased LVEDD is associated with left ventricular (LV) dysfunction. However, the association between LVEDD and all-cause mortality in patients with coronary artery disease (CAD) is uncertain. Methods: This study enrolled 33,147 patients with CAD who had undergone transthoracic echocardiography between January 2007 and December 2018 from the Cardiorenal Improvement study (NCT04407936). The patients were stratified into four groups based on the quartile of LVEDD (Quartile 1: LVEDD ≤ 43 mm, Quartile 2: 43 mm < LVEDD ≤ 46 mm, Quartile 3: 46 mm < LVEDD ≤ 51 mm, Quartile 4: LVEDD > 51 mm) and were categorized into two groups (Quartile 1-3 versus Quartile 4). Survival curves were generated with the Kaplan-Meier analysis, and the differences between groups were assessed by log-rank test. Restricted cubic splines and cox proportional hazards models were used to investigate the association with LVEDD and all-cause mortality. Results: A total of 33,147 patients (average age: 63.0 ± 10.6 years; 24.0% female) were included in the final analysis. In the average follow-up period of 5.2 years, a total of 4288 patients died. The mortality of the larger LVEDD group (Quartile 4) was significantly higher than the lower LVEDD groups (Quartile 1-3) (18.05% vs 11.15%, p < 0.001). After adjusting for confounding factors, patients with the larger LVEDD (Quartile 4) had a 1.19-fold risk for all-cause mortality (95% CI: 1.09-1.30) compared with the lower quartile (Quartile 1-3). Conclusions: Enlarged LVEDD is an independent predictor of all-cause mortality in patients with CAD. LVEDD measurements may be helpful for risk stratification and providing therapeutic targets for the management of CAD patients.
RESUMEN
As a prognostic biomarker for breast cancer, human epidermal growth factor receptor 2 (HER-2) is of crucial diagnostic value. Here, a label-free electrochemical aptasensor was established for the ultrasensitive detection of HER-2 using a modified electrode of Bi-Sb alloy materials (Bi-Sb AMs). The performance of the aptasensor was enhanced greatly due to the introduction of Bi-Sb alloy materials (Bi-Sb AMs) with high conductivity. Furthermore, by integrating the aptasensor with the Sensit Smart U-disk electrochemical analyzer, the point-of-care testing (POCT) for HER-2 was realized. Under the optimal experimental parameters, the POCT analyzer showed a wide linear response from 0.01 pg mL-1 to 100 ng mL-1, with a low detection limit (LOD) of 5.96 fg mL-1 for the detection of HER-2. The presented POCT analyzer exhibited good specificity, stability, and reproducibility. Benefiting from the simple operation and rapid testing, the developed analyzer will have potential application in the prognostic diagnosis and treatment of breast cancer.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Técnicas Electroquímicas , Aleaciones , Reproducibilidad de los Resultados , Límite de Detección , OroRESUMEN
With the study of human diseases and biological processes increasing, a large number of non-coding variants have been identified and facilitated. The rapid accumulation of genetic and epigenomic information has resulted in an urgent need to collect and process data to explore the regulation of non-coding variants. Here, we developed a comprehensive variation annotation database for human (VARAdb, http://www.licpathway.net/VARAdb/), which specifically considers non-coding variants. VARAdb provides annotation information for 577,283,813 variations and novel variants, prioritizes variations based on scores using nine annotation categories, and supports pathway downstream analysis. Importantly, VARAdb integrates a large amount of genetic and epigenomic data into five annotation sections, which include 'Variation information', 'Regulatory information', 'Related genes', 'Chromatin accessibility' and 'Chromatin interaction'. The detailed annotation information consists of motif changes, risk SNPs, LD SNPs, eQTLs, clinical variant-drug-gene pairs, sequence conservation, somatic mutations, enhancers, super enhancers, promoters, transcription factors, chromatin states, histone modifications, chromatin accessibility regions and chromatin interactions. This database is a user-friendly interface to query, browse and visualize variations and related annotation information. VARAdb is a useful resource for selecting potential functional variations and interpreting their effects on human diseases and biological processes.
Asunto(s)
Enfermedad de Alzheimer/genética , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Variación Genética , Genoma Humano , Sitios de Carácter Cuantitativo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Cromatina , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Elementos de Facilitación Genéticos , Humanos , Internet , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Programas InformáticosRESUMEN
OBJECTIVES: To explore the potential value of ultrasound radiomics in differentiating between benign and malignant breast nodules by extracting the radiomic features of two-dimensional (2D) grayscale ultrasound images and establishing a logistic regression model. METHODS: The clinical and ultrasound data of 1000 female patients (500 pathologically benign patients, 500 pathologically malignant patients) who underwent breast ultrasound examinations at our hospital were retrospectively analyzed. The cases were randomly divided into training and validation sets at a ratio of 7:3. Once the region of interest (ROI) of the lesion was manually contoured, Spearman's rank correlation, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm were adopted to determine optimal features and establish a logistic regression classification model. The performance of the model was assessed using the area under the receiver operating characteristic curve (AUC), and calibration and decision curves (DCA). RESULTS: Eight ultrasound radiomic features were selected to establish the model. The AUC values of the model were 0.979 and 0.977 in the training and validation sets, respectively (P = .0029), indicating good discriminative ability in both datasets. Additionally, the calibration and DCA suggested that the model's calibration efficiency and clinical application value were both superior. CONCLUSIONS: The proposed logistic regression model based on 2D grayscale ultrasound images could facilitate differential diagnosis of benign and malignant breast nodules. The model, which was constructed using ultrasound radiomic features identified in this study, demonstrated good diagnostic performance and could be useful in helping clinicians formulate individualized treatment plans for patients.
Asunto(s)
Algoritmos , Ultrasonografía Mamaria , Femenino , Humanos , Modelos Logísticos , Estudios Retrospectivos , UltrasonografíaRESUMEN
This study aimed to develop a quenching-type electrochemiluminescence (ECL) immunosensor for human epidermal growth factor receptor (Her-2) detection. Firstly, Pd/NiFeOx nanoflowers decorated by in situ formation of gold nanoparticles (Au NPs) and 2D Ti3C2 MXene nanosheets were synthesized (AuPd/NiFeOx/Ti3C2) as carriers to load luminol and primary antibodies. Impressively, AuPd/NiFeOx/Ti3C2 with excellent peroxidase-like activity could accelerate the decomposition of the coreactant H2O2 generating more reactive oxygen species (ROSs) under the working potential from 0 to 0.8 V, resulting in highly efficient ECL emission at 435-nm wavelengths. The introduction of tungsten-based polyoxometalate nanoclusters (W-POM NCs) which exhibit remarkable ROSs-scavenging activity as secondary antibody labels could improve the sensitivity of immunosensors. The ZnO nanoflowers were employed to encapsulate minute-sized W-POM NCs, and polydopamine was self-polymerized on the surface of Zn(W-POM)O to anchor secondary antibodies. The mechanism of the quenching strategy was explored and it was found that W-POM NCs could consume ROSs by the redox reaction of W5+ resulting in W6+. The proposed ECL immunosensor displayed a wide linear response range of 0.1 pg·mL-1 to 50 ng·mL-1, and a low detection limit of 0.036 pg mL-1 (S/N = 3). The recoveries ranged from 93.9 to 99.4%, and the relative standard deviation (RSD) was lower than 10%. This finding is promising for the design of detecting new protein biomarkers.
Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Luminol , Especies Reactivas de Oxígeno , Técnicas Biosensibles/métodos , Tungsteno , Oro , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , InmunoensayoRESUMEN
Acute kidney injury (AKI) occurred in 12.8% of patients undergoing surgery and is associated with increased mortality. Chronic kidney disease (CKD) is a well-known risk for death and cardiovascular disease (CVD). Effects of AKI and CKD on patients undergoing coronary angiography (CAG) remain incompletely defined. The aim of our study was to investigate the relationship between acute and CKD and mortality in patients undergoing CAG. The cohort study included 49,194 patients in the multicenter cohort from January 2007 to December 2018. Cox regression analyses and Fine-Gray proportional subdistribution risk regression analysis are used to examine the association between kidney disease and all-cause and cardiovascular mortality. In the present study, 13,989 (28.4%) patients had kidney disease. During follow-up, 6144 patients died, of which 4508 (73.4%) were due to CVD. AKI without CKD (HR: 1.54, 95% CI: 1.36-1.74), CKD without AKI (HR: 2.02, 95% CI: 1.88-2.17), AKI with CKD (HR: 3.26, 95% CI: 2.90-3.66), and end-stage kidney disease (ESKD; HR: 5.63, 95% CI: 4.40-7.20) were significantly associated with all-cause mortality. Adjusted HR (95% CIs) for cardiovascular mortality was significantly elevated among patients with AKI without CKD (1.78 [1.54-2.06]), CKD without AKI (2.28 [2.09-2.49]), AKI with CKD (3.99 [3.47-4.59]), and ESKD (6.46 [4.93-8.46]). In conclusion, this study shows that acute or CKD is present in up to one-third of patients undergoing CAG and is associated with a substantially increased mortality. These findings highlight the importance of perioperative management of kidney function, especially in patients with CKD.Impact StatementWhat is already known on this subject? Acute kidney injury (AKI) occurred in 12.8% of patients undergoing surgery and is linked to a 22.2% increase in mortality. Chronic kidney disease (CKD) is a well-known risk for death and cardiovascular events. Effects of AKI and CKD on patients undergoing coronary angiography (CAG) remain incompletely defined.What do the results of this study add? This study shows that kidney disease is present in up to one-third of patients undergoing CAG and is associated with a substantially increased mortality. AKI and CKD are independent predicators for mortality in patients undergoing CAG.What are the implications of these findings for clinical practice and/or further research? These findings highlight the importance of perioperative management of kidney function, especially in patients with CKD.