RESUMEN
Establishing and maintaining tolerance to self-antigens or innocuous foreign antigens is vital for the preservation of organismal health. Within the thymus, medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (AIRE) have a critical role in self-tolerance through deletion of autoreactive T cells and promotion of thymic regulatory T (Treg) cell development1-4. Within weeks of birth, a separate wave of Treg cell differentiation occurs in the periphery upon exposure to antigens derived from the diet and commensal microbiota5-8, yet the cell types responsible for the generation of peripheral Treg (pTreg) cells have not been identified. Here we describe the identification of a class of RORγt+ antigen-presenting cells called Thetis cells, with transcriptional features of both mTECs and dendritic cells, comprising four major sub-groups (TC I-TC IV). We uncover a developmental wave of Thetis cells within intestinal lymph nodes during a critical window in early life, coinciding with the wave of pTreg cell differentiation. Whereas TC I and TC III expressed the signature mTEC nuclear factor AIRE, TC IV lacked AIRE expression and was enriched for molecules required for pTreg generation, including the TGF-ß-activating integrin αvß8. Loss of either major histocompatibility complex class II (MHCII) or ITGB8 by Thetis cells led to a profound impairment in intestinal pTreg differentiation, with ensuing colitis. By contrast, MHCII expression by RORγt+ group 3 innate lymphoid cells (ILC3) and classical dendritic cells was neither sufficient nor required for pTreg generation, further implicating TC IV as the tolerogenic RORγt+ antigen-presenting cell with an essential function in early life. Our studies reveal parallel pathways for the establishment of tolerance to self and foreign antigens in the thymus and periphery, respectively, marked by the involvement of shared cellular and transcriptional programmes.
Asunto(s)
Células Presentadoras de Antígenos , Células Dendríticas , Células Epiteliales , Microbioma Gastrointestinal , Tolerancia Inmunológica , Linfocitos T Reguladores , Timo , Diferenciación Celular , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Timo/citología , Timo/inmunología , Factor de Crecimiento Transformador beta/inmunología , Células Presentadoras de Antígenos/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Ganglios Linfáticos/inmunologíaRESUMEN
Nuclear receptors (NRs) are transcription factors that modulate gene expression in a ligand-dependent manner. The ubiquitously expressed glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor gamma (PPARγ) represent steroid (type I) and non-steroid (type II) classes of NRs, respectively. The diverse transcriptional and physiological outcomes of their activation are highly tissue-specific. For example, in subsets of immune cells, such as macrophages, the signaling of GR and PPARγ converges to elicit an anti-inflammatory phenotype; in contrast, in the adipose tissue, their signaling can lead to reciprocal metabolic outcomes. This review explores the cooperative and divergent outcomes of GR and PPARγ functions in different cell types and tissues, including immune cells, adipose tissue and the liver. Understanding the coordinated control of these NR pathways should advance studies in the field and potentially pave the way for developing new therapeutic approaches to exploit the GR:PPARγ crosstalk.
Asunto(s)
PPAR gamma , Receptores de Glucocorticoides , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Ligandos , PPAR gamma/genética , Receptores de Glucocorticoides/genética , Factores de Transcripción/fisiologíaRESUMEN
The intestinal immune system must establish tolerance to food antigens to prevent onset of allergic and inflammatory diseases. Peripherally generated regulatory T (pTreg) cells play an essential role in suppressing inflammatory responses to allergens; however, the antigen-presenting cell (APC) that instructs food-specific pTreg cells is not known. Here, we show that antigen presentation and TGF-ß activation by a subset of RORγt + antigen-presenting cells (APC), Thetis cells IV (TC IV), is required for food-induced pTreg cell differentiation and oral tolerance. By contrast, antigen presentation by dendritic cells (DCs) was dispensable for pTreg induction but required for T H 1 effector responses, highlighting a division of labor between tolerogenic TCs and pro-inflammatory DCs. While antigen presentation by TCs was required for food-specific pTreg generation both in early life and adulthood, the increased abundance of TCs in the peri-weaning period was associated with a window of opportunity for enhanced pTreg differentiation. These findings establish a critical role for TCs in oral tolerance and suggest that these cells may represent a key therapeutic target for the treatment of food-associated allergic and inflammatory diseases.
RESUMEN
Macrophages (MФ) and microglia (MG) are critical in the pathogenesis of multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Glucocorticoids (GCs) and interferon ß (IFN-ß) are frontline treatments for MS, and disrupting each pathway in mice aggravates EAE. Glucocorticoid receptor-interacting protein 1 (GRIP1) facilitates both GR and type I IFN transcriptional actions; hence, we evaluated the role of GRIP1 in neuroinflammation. Surprisingly, myeloid cell-specific loss of GRIP1 dramatically reduced EAE severity, immune cell infiltration of the CNS, and MG activation and demyelination specifically during the neuroinflammatory phase of the disease, yet also blunted therapeutic properties of IFN-ß. MФ/MG transcriptome analyses at the bulk and single-cell levels revealed that GRIP1 deletion attenuated nuclear receptor, inflammatory and, interestingly, type I IFN pathways and promoted the persistence of a homeostatic MG signature. Together, these results uncover the multifaceted function of type I IFN in MS/EAE pathogenesis and therapy, and an unexpectedly permissive role of myeloid cell GRIP1 in neuroinflammation.