Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(29): 8314-9, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27364007

RESUMEN

Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.


Asunto(s)
Exocitosis/efectos de los fármacos , Fosfatos de Inositol/farmacología , Sinaptotagmina I/fisiología , Animales , Hipocampo/citología , Neuronas/fisiología , Células PC12 , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Biochem J ; 474(12): 2039-2049, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28495859

RESUMEN

Misfolded α-synuclein (A-syn) is widely recognized as the primal cause of neurodegenerative diseases including Parkinson's disease and dementia with Lewy bodies. The normal cellular function of A-syn has, however, been elusive. There is evidence that A-syn plays multiple roles in the exocytotic pathway in the neuron, but the underlying molecular mechanisms are unclear. A-syn has been known to interact with negatively charged phospholipids and with vesicle SNARE protein VAMP2. Using single-vesicle docking/fusion assays, we find that A-syn promotes SNARE-dependent vesicles docking significantly at 2.5 µM. When phosphatidylserine (PS) is removed from t-SNARE-bearing vesicles, the docking enhancement by A-syn disappears and A-syn instead acts as an inhibitor for docking. In contrast, subtraction of PS from the v-SNARE-carrying vesicles enhances vesicle docking even further. Moreover, when we truncate the C-terminal 45 residues of A-syn that participates in interacting with VAMP2, the promotion of vesicle docking is abrogated. Thus, the results suggest that the A-syn's interaction with v-SNARE through its C-terminal tail and its concurrent interaction with PS in trans through its amphipathic N-terminal domain facilitate SNARE complex formation, whereby A-syn aids SNARE-dependent vesicle docking.


Asunto(s)
Modelos Biológicos , Fosfatidilserinas/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , alfa-Sinucleína/metabolismo , Sustitución de Aminoácidos , Animales , Humanos , Liposomas , Fusión de Membrana , Micelas , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/química , Proteínas SNARE/genética , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
3.
Proc Natl Acad Sci U S A ; 112(40): 12372-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392564

RESUMEN

Intercellular bridges are a conserved feature of spermatogenesis in mammalian germ cells and derive from arresting cell abscission at the final stage of cytokinesis. However, it remains to be fully understood how germ cell abscission is arrested in the presence of general cytokinesis components. The TEX14 (testis-expressed gene 14) protein is recruited to the midbody and plays a key role in the inactivation of germ cell abscission. To gain insights into the structural organization of TEX14 at the midbody, we have determined the crystal structures of the EABR [endosomal sorting complex required for transport (ESCRT) and ALIX-binding region] of CEP55 bound to the TEX14 peptide (or its chimeric peptides) and performed functional characterization of the CEP55-TEX14 interaction by multiexperiment analyses. We show that TEX14 interacts with CEP55-EABR via its AxGPPx3Y (Ala793, Gly795, Pro796, Pro797, and Tyr801) and PP (Pro803 and Pro804) sequences, which together form the AxGPPx3YxPP motif. TEX14 competitively binds to CEP55-EABR to prevent the recruitment of ALIX, which is a component of the ESCRT machinery with the AxGPPx3Y motif. We also demonstrate that a high affinity and a low dissociation rate of TEX14 to CEP55, and an increase in the local concentration of TEX14, cooperatively prevent ALIX from recruiting ESCRT complexes to the midbody. The action mechanism of TEX14 suggests a scheme of how to inactivate the abscission of abnormal cells, including cancer cells.


Asunto(s)
Células Germinativas/metabolismo , Testículo/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Expresión Génica , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis/genética , Testículo/citología , Factores de Transcripción/genética
4.
Biochem J ; 473(14): 2219-24, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27222590

RESUMEN

Complexin (Cpx) is thought to be a major regulator of soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE)-dependent membrane fusion. Although the inhibition of membrane fusion by Cpx has been frequently reported, its structural basis has been elusive and an anticipated disruption of the SNARE core has never been observed. In the present study, to mimic the natural environment, we assembled a single SNAREpin between two nanodisc membrane patches. Single-molecule FRET (smFRET) detects a large conformational change, specifically at the C-terminal half, whereas no conformational change is observed at the N-terminal half. Our results suggest that Cpx splits the C-terminal half of the SNARE core at least 10 Å (1 Å=0.1 nm), whereby inhibiting further progression of SNARE zippering and membrane fusion.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fusión de Membrana/fisiología , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Unión Proteica/fisiología , Proteínas SNARE/genética
5.
Biochemistry ; 55(26): 3667-73, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27286417

RESUMEN

Complexin (Cpx) is a major regulator for Ca(2+)-triggered fast neuroexocytosis which underlies neuronal communication. Many psychiatric and neurological disorders accompany changes in the Cpx expression level, suggesting that abnormal Cpx levels may elicit aberrant cognitive symptoms. To comprehend how the changes in the Cpx level might affect neuronal communication, we investigated Ca(2+)-triggered exocytosis at various Cpx concentrations. Ca(2+)-triggered content-mixing between a single proteoliposome of t-SNARE and another single proteoliposome of v-SNARE plus Ca(2+)-sensor synaptotagmin 1 was examined with total internal reflection microscopy. We find that Cpx enhances Ca(2+)-triggered vesicle fusion with the yield changing from approximately 10% to 70% upon increasing Cpx from 0 to 100 nM. Unexpectedly, however, the fusion efficiency becomes reduced when Cpx is increased further, dropping to 20% in the micromolar range, revealing a bell-shaped dose-response curve. Intriguingly, we find that the rate of vesicle fusion is nearly invariant through the entire range of Cpx concentrations studied, suggesting that a reevaluation of the current Cpx clamping mechanism is necessary. Thus, our results provide insights into how delicately Cpx fine-tunes neuronal communication.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Calcio/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico , Fusión de Membrana , Unión Proteica , Ratas
6.
J Biol Chem ; 290(16): 10535-43, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25716321

RESUMEN

In neuroexocytosis, SNAREs and Munc18-1 may consist of the minimal membrane fusion machinery. Consistent with this notion, we observed, using single molecule fluorescence assays, that Munc18-1 stimulates SNARE zippering and SNARE-dependent lipid mixing in the absence of a major Ca(2+) sensor synaptotagmin-1 (Syt1), providing the structural basis for the conserved function of Sec1/Munc18 proteins in exocytosis. However, when full-length Syt1 is present, no enhancement of SNARE zippering and no acceleration of Ca(2+)-triggered content mixing by Munc18-1 are observed. Thus, our results show that Syt1 acts as an antagonist for Munc18-1 in SNARE zippering and fusion pore opening. Although the Sec1/Munc18 family may serve as part of the fusion machinery in other exocytotic pathways, Munc18-1 may have evolved to play a different role, such as regulating syntaxin-1a in neuroexocytosis.


Asunto(s)
Calcio/metabolismo , Proteínas Munc18/genética , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Animales , Unión Competitiva , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Fusión de Membrana , Proteínas Munc18/metabolismo , Unión Proteica , Proteolípidos/química , Proteolípidos/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/química , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
7.
J Am Chem Soc ; 138(13): 4512-21, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26987363

RESUMEN

Membrane fusion is mediated by the SNARE complex which is formed through a zippering process. Here, we developed a chemical controller for the progress of membrane fusion. A hemifusion state was arrested by a polyphenol myricetin which binds to the SNARE complex. The arrest of membrane fusion was rescued by an enzyme laccase that removes myricetin from the SNARE complex. The rescued hemifusion state was metastable and long-lived with a decay constant of 39 min. This membrane fusion controller was applied to delineate how Ca(2+) stimulates fusion-pore formation in a millisecond time scale. We found, using a single-vesicle fusion assay, that such myricetin-primed vesicles with synaptotagmin 1 respond synchronously to physiological concentrations of Ca(2+). When 10 µM Ca(2+) was added to the hemifused vesicles, the majority of vesicles rapidly advanced to fusion pores with a time constant of 16.2 ms. Thus, the results demonstrate that a minimal exocytotic membrane fusion machinery composed of SNAREs and synaptotagmin 1 is capable of driving membrane fusion in a millisecond time scale when a proper vesicle priming is established. The chemical controller of SNARE-driven membrane fusion should serve as a versatile tool for investigating the differential roles of various synaptic proteins in discrete fusion steps.


Asunto(s)
Calcio/metabolismo , Proteínas SNARE/metabolismo , Animales , Exocitosis , Flavonoides/metabolismo , Lacasa/metabolismo , Fusión de Membrana , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Ratas , Sinaptotagmina I/metabolismo
8.
EMBO J ; 31(9): 2144-55, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22407297

RESUMEN

Synaptotagmin-1 (Syt1) is a major Ca(2+) sensor for synchronous neurotransmitter release, which requires vesicle fusion mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Syt1 utilizes its diverse interactions with target membrane (t-) SNARE, SNAREpin, and phospholipids, to regulate vesicle fusion. To dissect the functions of Syt1, we apply a single-molecule technique, alternating-laser excitation (ALEX), which is capable of sorting out subpopulations of fusion intermediates and measuring their kinetics in solution. The results show that Syt1 undergoes at least three distinct steps prior to lipid mixing. First, without Ca(2+), Syt1 mediates vesicle docking by directly binding to t-SNARE/phosphatidylinositol 4,5-biphosphate (PIP(2)) complex and increases the docking rate by 10(3) times. Second, synaptobrevin-2 binding to t-SNARE displaces Syt1 from SNAREpin. Third, with Ca(2+), Syt1 rebinds to SNAREpin, which again requires PIP(2). Thus without Ca(2+), Syt1 may bring vesicles to the plasma membrane in proximity via binding to t-SNARE/PIP(2) to help SNAREpin formation and then, upon Ca(2+) influx, it may rebind to SNAREpin, which may trigger synchronous fusion. The results show that ALEX is a powerful method to dissect multiple kinetic steps in the vesicle fusion pathway.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Bioensayo , Calcio/metabolismo , Cinética , Soluciones , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
9.
Biochem Biophys Res Commun ; 477(2): 181-7, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27297113

RESUMEN

Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Fosfoproteínas/química , Fosfoproteínas/ultraestructura , Sitios de Unión , Quinasa de la Caseína II/química , Quinasa de la Caseína II/ultraestructura , Activación Enzimática , Proteínas Intrínsecamente Desordenadas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 110(4): 1333-8, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23300284

RESUMEN

Fusion pore formation and expansion, crucial steps for neurotransmitter release and vesicle recycling in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicle fusion, have not been well studied in vitro due to the lack of a reliable content-mixing fusion assay. Using methods detecting the intervesicular mixing of small and large cargoes at a single-vesicle level, we found that the neuronal SNARE complexes have the capacity to drive membrane hemifusion. However, efficient fusion pore formation and expansion require synaptotagmin 1 and Ca(2+). Real-time measurements show that pore expansion detected by content mixing of large DNA cargoes occurs much slower than initial pore formation that transmits small cargoes. Slow pore expansion perhaps provides a time window for vesicles to escape the full collapse fusion pathway via alternative mechanisms such as kiss-and-run. The results also show that complexin 1 stimulates pore expansion significantly, which could put bias between two pathways of vesicle recycling.


Asunto(s)
Calcio/metabolismo , Fusión de Membrana/fisiología , Sinaptotagmina I/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Fenómenos Biofísicos , Sondas de ADN , Metabolismo de los Lípidos , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/genética
11.
Proc Natl Acad Sci U S A ; 110(10): 4087-92, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431141

RESUMEN

Parkinson disease and dementia with Lewy bodies are featured with the formation of Lewy bodies composed mostly of α-synuclein (α-Syn) in the brain. Although evidence indicates that the large oligomeric or protofibril forms of α-Syn are neurotoxic agents, the detailed mechanisms of the toxic functions of the oligomers remain unclear. Here, we show that large α-Syn oligomers efficiently inhibit neuronal SNARE-mediated vesicle lipid mixing. Large α-Syn oligomers preferentially bind to the N-terminal domain of a vesicular SNARE protein, synaptobrevin-2, which blocks SNARE-mediated lipid mixing by preventing SNARE complex formation. In sharp contrast, the α-Syn monomer has a negligible effect on lipid mixing even with a 30-fold excess compared with the case of large α-Syn oligomers. Thus, the results suggest that large α-Syn oligomers function as inhibitors of dopamine release, which thus provides a clue, at the molecular level, to their neurotoxicity.


Asunto(s)
Neuronas/fisiología , Proteínas SNARE/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/fisiología , Animales , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neurotoxinas/química , Neurotoxinas/toxicidad , Células PC12 , Unión Proteica , Estructura Cuaternaria de Proteína , Proteolípidos/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/toxicidad , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/fisiología , Transducción Genética , Proteína 2 de Membrana Asociada a Vesículas/fisiología , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
12.
Biochemistry ; 54(9): 1831-40, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25714795

RESUMEN

Alzheimer's disease (AD) and Parkinson's disease (PD) are caused by ß-amyloid (Aß) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aß and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aß42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aß-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aß42 oligomers (or aggregates) or the products of αS incubated without Aß42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aß and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Vesículas Citoplasmáticas/fisiología , Fusión de Membrana , Proteínas SNARE/antagonistas & inhibidores , alfa-Sinucleína/fisiología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Exocitosis/genética , Humanos , Fusión de Membrana/genética , Células PC12 , Unión Proteica/genética , Multimerización de Proteína/fisiología , Ratas , Proteínas SNARE/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Transfección , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Phys Biol ; 12(2): 025003, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25898400

RESUMEN

Lipid molecules, structural components of biomembranes, have been proposed for an important role in membrane fusion. Through various techniques based on a protein-reconstituted vesicle-vesicle fusion system, we investigated the influence of several lipid molecules on different stages of a yeast soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion process. Lipid compositions played a significant role in the early stages, docking and lipid mixing, while only exhibiting a minor effect on fusion pore formation and dilation phases, indicated by both small and large content mixing.


Asunto(s)
Metabolismo de los Lípidos , Fusión de Membrana , Proteínas SNARE/metabolismo , Levaduras/metabolismo
14.
Biochem J ; 459(1): 95-102, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24456382

RESUMEN

SNAREpins must be formed between two membranes to allow vesicle fusion, a required process for neurotransmitter release. Although its post-fusion structure has been well characterized, pre-fusion conformations have been elusive. We used single-molecule FRET and EPR to investigate the SNAREpin assembled between two nanodisc membranes. The SNAREpin shows at least three distinct dynamic states, which might represent pre-fusion intermediates. Although the N-terminal half above the conserved ionic layer maintains a robust helical bundle structure, the membrane-proximal C-terminal half shows high FRET, representing a helical bundle (45%), low FRET, reflecting a frayed conformation (39%) or mid FRET revealing an as-yet unidentified structure (16%). It is generally thought that SNAREpins are trapped at a partially zipped conformation in the pre-fusion state, and complete SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) assembly happens concomitantly with membrane fusion. However, our results show that the complete SNARE complex can be formed without membrane fusion, which suggests that the complete SNAREpin formation could precede membrane fusion, providing an ideal access to the fusion regulators such as complexins and synaptotagmin 1.


Asunto(s)
Fusión de Membrana/fisiología , Nanopartículas/química , Nanopartículas/metabolismo , Proteínas SNARE/química , Proteínas SNARE/fisiología , Exocitosis/fisiología , Conformación Proteica
15.
Biophys J ; 107(7): 1601-8, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296312

RESUMEN

In Alzheimer's disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aß) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aß of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aß oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aß oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aß oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/farmacología , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Ratones , Fragmentos de Péptidos/metabolismo , Porosidad , Estructura Secundaria de Proteína , alfa-Sinucleína/farmacología , Proteínas tau/farmacología
16.
Biochemistry ; 53(24): 3889-96, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24884175

RESUMEN

α-Synuclein (α-Syn), a major component of Lewy body that is considered as the hallmark of Parkinson's disease (PD), has been implicated in neuroexocytosis. Overexpression of α-Syn decreases the neurotransmitter release. However, the mechanism by which α-Syn buildup inhibits the neurotransmitter release is still unclear. Here, we investigated the effect of nonaggregated α-Syn on SNARE-dependent liposome fusion using fluorescence methods. In ensemble in vitro assays, α-Syn reduces lipid mixing mediated by SNAREs. Furthermore, with the more advanced single-vesicle assay that can distinguish vesicle docking from fusion, we found that α-Syn specifically inhibits vesicle docking, without interfering with the fusion. The inhibition in vesicle docking requires α-Syn binding to acidic lipid containing membranes. Thus, these results imply the existence of at least two mechanisms of inhibition of SNARE-dependent membrane fusion: at high concentrations, nonaggregated α-Syn inhibits docking by binding acidic lipids but not v-SNARE; on the other hand, at much lower concentrations, large α-Syn oligomers inhibit via a mechanism that requires v-SNARE interaction [ Choi et al. Proc. Natl. Acad. Sci. U. S. A. 2013 , 110 ( 10 ), 4087 - 4092 ].


Asunto(s)
Transporte Biológico/efectos de los fármacos , Fusión de Membrana/fisiología , Proteínas SNARE/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/fisiología , Exocitosis/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
17.
Biochem Biophys Res Commun ; 450(1): 831-6, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24960195

RESUMEN

Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca(2+)-independent manner, while myricetin inhibits Ca(2+)-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Leucina Zippers/efectos de los fármacos , Fusión de Membrana/fisiología , Neuronas/metabolismo , Polifenoles/farmacología , Proteínas SNARE/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Células PC12 , Ratas
18.
Biochem J ; 456(1): 25-33, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24001110

RESUMEN

Syt1 (synaptotagmin 1), a major Ca2+ sensor for fast neurotransmitter release, contains tandem Ca2+-binding C2 domains (C2AB), a single transmembrane α-helix and a highly charged 60-residue-long linker in between. Using single-vesicle-docking and content-mixing assays we found that the linker region of Syt1 is essential for its two signature functions: Ca2+-independent vesicle docking and Ca2+-dependent fusion pore opening. The linker contains the basic-amino-acid-rich N-terminal region and the acidic-amino-acid-rich C-terminal region. When the charge segregation was disrupted, fusion pore opening was slowed, whereas docking was unchanged. Intramolecular disulfide cross-linking between N- and C-terminal regions of the linker or deletion of 40 residues from the linker reduced docking while enhancing pore opening, although the changes were subtle. EPR analysis showed Ca2+-induced line broadening reflecting a conformational change in the linker region. Thus the results of the present study suggest that the electrostatically bipartite linker region may extend for docking and fold to facilitate pore opening.


Asunto(s)
Fusión de Membrana , Sinaptotagmina I/química , Animales , Calcio/química , Cationes Bivalentes , Reactivos de Enlaces Cruzados/química , Disulfuros/química , Lípidos/química , Membranas Artificiales , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ratas , Proteínas SNARE/química , Electricidad Estática , Vesículas Sinápticas/química , Sinaptotagmina I/genética
19.
Biochem J ; 450(3): 537-46, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23252429

RESUMEN

Anti-allergic effects of dietary polyphenols were extensively studied in numerous allergic disease models, but the molecular mechanisms of anti-allergic effects by polyphenols remain poorly understood. In the present study, we show that the release of granular cargo molecules, contained in distinct subsets of granules of mast cells, is specifically mediated by two sets of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, and that various polyphenols differentially inhibit the formation of those SNARE complexes. Expression analysis of RBL-2H3 cells for 11 SNARE genes and a lipid mixing assay of 24 possible combinations of reconstituted SNAREs indicated that the only two active SNARE complexes involved in mast cell degranulation are Syn (syntaxin) 4/SNAP (23 kDa synaptosome-associated protein)-23/VAMP (vesicle-associated membrane protein) 2 and Syn4/SNAP-23/VAMP8. Various polyphenols selectively or commonly interfered with ternary complex formation of these two SNARE complexes, thereby stopping membrane fusion between granules and plasma membrane. This led to the differential effect of polyphenols on degranulation of three distinct subsets of granules. These results suggest the possibility that formation of a variety of SNARE complexes in numerous cell types is controlled by polyphenols which, in turn, might regulate corresponding membrane trafficking.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Mastocitos/efectos de los fármacos , Polifenoles/farmacología , Proteínas SNARE/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Histamina/metabolismo , Humanos , Mastocitos/metabolismo , Mastocitos/fisiología , Complejos Multiproteicos/metabolismo , Polifenoles/metabolismo , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Vesículas Transportadoras/clasificación , Vesículas Transportadoras/fisiología , beta-N-Acetilhexosaminidasas/metabolismo
20.
J Am Chem Soc ; 135(28): 10254-7, 2013 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-23808880

RESUMEN

Current single-molecule techniques do not permit the real-time observation of multiple proteins interacting closely with each other. We here report an approach enabling us to determine the single-molecule fluorescence resonance energy transfer (FRET) kinetics of multiple protein-protein interactions occurring far below the diffraction limit. We observe a strongly cooperative formation of multimeric soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, which suggests that formation of the first SNARE complex triggers a cascade of SNARE complex formation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas/química , Cinética , Modelos Moleculares , Unión Proteica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA