Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurol Neurosurg Psychiatry ; 94(9): 670-680, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414536

RESUMEN

BACKGROUND: While obesity in midlife is a risk factor for dementia, several studies suggested that obesity also protected against dementia, hence so-called obesity paradox. The current study aims to address the relationship between apolipoprotein E (APOE) genotype and obesity in dementia. METHODS: Clinical and neuropathological records of the National Alzheimer's Coordinating Center (NACC) in the USA, which longitudinally followed approximately 20 000 subjects with different cognitive statues, APOE genotype and obesity states, were reviewed. RESULTS: Obesity was associated with cognitive decline in early elderly cognitively normal individuals without APOE4, especially those with APOE2. Neuropathological analyses adjusted for dementia status showed that APOE2 carriers tended to have more microinfarcts and haemorrhages due to obesity. On the other hand, obesity was associated with a lower frequency of dementia and less cognitive impairment in individuals with mild cognitive impairment or dementia. Such trends were particularly strong in APOE4 carriers. Obesity was associated with fewer Alzheimer's pathologies in individuals with dementia. CONCLUSIONS: Obesity may accelerate cognitive decline in middle to early elderly cognitive normal individuals without APOE4 likely by provoking vascular impairments. On the other hand, obesity may ease cognitive impairment in both individuals with dementia and individuals at the predementia stage, especially those with APOE4, through protecting against Alzheimer's pathologies. These results support that APOE genotype modifies the obesity paradox in dementia.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Obesidad/complicaciones , Obesidad/genética , Paradoja de la Obesidad
2.
J Neuroinflammation ; 18(1): 86, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33812385

RESUMEN

BACKGROUND: Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS: Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS: Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION: BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.


Asunto(s)
Circulación Cerebrovascular/genética , Eliminación de Gen , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Neuroglía/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Sustancia Blanca/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/patología , Sustancia Blanca/patología
3.
FASEB J ; 34(2): 2425-2435, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907998

RESUMEN

Clinical studies have indicated that obesity and diabetes are associated with Alzheimer's disease (AD) and neurodegeneration. Although the mechanisms underlying these associations remain elusive, the bidirectional interactions between obesity/diabetes and Alzheimer's disease (AD) may be involved in them. Both obesity/diabetes and AD significantly reduce life expectancy. We generated AppNL-F/wt knock-in; ob/ob mice by crossing AppNL-F/wt knock-in mice and ob/ob mice to investigate whether amyloid-ß (Aß) affects the lifespan of ob/ob mice. AppNL-F/wt knock-in; ob/ob mice displayed the shortest lifespan compared to wild-type mice, AppNL-F/wt knock-in mice, and ob/ob mice. Notably, the Aß42 levels were increased at minimum levels before deposition in AppNL-F/wt knock-in mice and AppNL-F/wt knock-in; ob/ob mice at 18 months of age. No differences in the levels of several neuronal markers were observed between mice at this age. However, we observed increased levels of glial fibrillary acidic protein (GFAP), an astrocyte marker, in AppNL-F/wt knock-in; ob/ob mice, while the levels of several microglial markers, including CD11b, TREM2, and DAP12, were decreased in both ob/ob mice and AppNL-F/wt knock-in; ob/ob mice. The increase in GFAP levels was not observed in young AppNL-F/wt knock-in; ob/ob mice. Thus, the increased Aß42 levels may decrease the lifespan of ob/ob mice, which is associated with the dysregulation of microglia and astrocytes in an age-dependent manner. Based on these findings, the imbalance in these neuroinflammatory cells may provide a clue to the mechanisms by which the interaction between obesity/diabetes and early AD reduces life expectancy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Longevidad , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Astrocitos/patología , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Ratones Obesos , Microglía/patología , Fragmentos de Péptidos/genética
4.
Arterioscler Thromb Vasc Biol ; 40(1): 128-144, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665905

RESUMEN

OBJECTIVE: The ε4 allele of the APOE gene (APOE4) is the strongest genetic risk factor for Alzheimer disease when compared with the common ε3 allele. Although there has been significant progress in understanding how apoE4 (apolipoprotein E4) drives amyloid pathology, its effects on amyloid-independent pathways, in particular cerebrovascular integrity and function, are less clear. Approach and Results: Here, we show that brain pericytes, the mural cells of the capillary walls, differentially modulate endothelial cell phenotype in an apoE isoform-dependent manner. Extracellular matrix protein induction, tube-like structure formation, and barrier formation were lower with endothelial cells cocultured with pericytes isolated from apoE4-targeted replacement (TR) mice compared with those from apoE3-TR mice. Importantly, aged apoE4-targeted replacement mice had decreased extracellular matrix protein expression and increased plasma protein leakages compared with apoE3-TR mice. CONCLUSIONS: ApoE4 impairs pericyte-mediated basement membrane formation, potentially contributing to the cerebrovascular effects of apoE4.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Membrana Basal/metabolismo , Encéfalo/metabolismo , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Pericitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Apolipoproteínas E/biosíntesis , Membrana Basal/patología , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pericitos/patología , Isoformas de Proteínas
5.
Cancer ; 126(17): 3961-3971, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32573779

RESUMEN

BACKGROUND: To date, research has not determined the optimal procedure for adjuvant androgen deprivation therapy (ADT) in patients with locally advanced prostate cancer (PCa) treated for 6 months with neoadjuvant ADT and external-beam radiation therapy (EBRT). METHODS: A multicenter, randomized, phase 3 trial enrolled 303 patients with locally advanced PCa between 2001 and 2006. Participants were treated with neoadjuvant ADT for 6 months. Then, 280 patients whose prostate-specific antigen levels were less than pretreatment levels and less than 10 ng/mL were randomized. All 280 participants were treated with 72 Gy of EBRT in combination with adjuvant ADT for 8 months. Thereafter, participants were assigned to long-term ADT (5 years in all; arm 1) or intermittent ADT (arm 2). The primary endpoint was modified biochemical relapse-free survival (bRFS) with respect to nonmetastatic castration-resistant prostate cancer (nmCRPC) progression, clinical relapse, or any cause of death. RESULTS: The median follow-up time after randomization was 8.2 years. Among the 136 and 144 men assigned to trial arms 1 and 2, respectively, 24 and 30 progressed to nmCRPC or clinical relapse, and 5 and 6 died of PCa. The 5-year modified bRFS rates were 84.8% and 82.8% in trial arms 1 and 2, respectively (hazard ratio, 1.132; 95% confidence interval, 0.744-1.722). CONCLUSIONS: Although modified bRFS data did not demonstrate noninferiority for arm 2, intermittent adjuvant ADT after EBRT with 14 months of neoadjuvant and short-term adjuvant ADT is a promising treatment strategy, especially in a population of responders after 6 months of ADT for locally advanced PCa.


Asunto(s)
Antagonistas de Andrógenos/administración & dosificación , Terapia Neoadyuvante/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Anciano , Antagonistas de Andrógenos/efectos adversos , Terapia Combinada , Supervivencia sin Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Modelos de Riesgos Proporcionales , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radioterapia Conformacional/efectos adversos , Resultado del Tratamiento
6.
Brain ; 142(4): 1077-1092, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770921

RESUMEN

While the accumulation and aggregation of amyloid-ß and tau are central events in the pathogenesis of Alzheimer's disease, there is increasing evidence that cerebrovascular pathology is also abundant in Alzheimer's disease brains. In brain capillaries, endothelial cells are connected closely with one another through transmembrane tight junction proteins forming the blood-brain barrier. Because the blood-brain barrier tightly regulates the exchange of molecules between brain and blood and maintains brain homeostasis, its impairment is increasingly recognized as a critical factor contributing to Alzheimer's disease pathogenesis. However, the pathological relationship between blood-brain barrier properties and Alzheimer's disease progression in the human brain is not fully understood. In this study, we show that the loss of cortical tight junction proteins is a common event in Alzheimer's disease, and is correlated with synaptic degeneration. By quantifying the amounts of major tight junction proteins, claudin-5 and occludin, in 12 brain regions dissected from post-mortem brains of normal ageing (n = 10), pathological ageing (n = 14) and Alzheimer's disease patients (n = 19), we found that they were selectively decreased in cortical areas in Alzheimer's disease. Cortical tight junction proteins were decreased in association with the Braak neurofibrillary tangle stage. There was also a negative correlation between the amount of tight junction proteins and the amounts of insoluble Alzheimer's disease-related proteins, in particular amyloid-ß40, in cortical areas. In addition, the amount of tight junction proteins in these areas correlated positively with those of synaptic markers. Thus, loss of cortical tight junction proteins in Alzheimer's disease is associated with insoluble amyloid-ß40 and loss of synaptic markers. Importantly, the positive correlation between claudin-5 and synaptic markers, in particular synaptophysin, was present independent of insoluble amyloid-ß40, amyloid-ß42 and tau values, suggesting that loss of cortical tight junction proteins and synaptic degeneration is present, at least in part, independent of insoluble Alzheimer's disease-related proteins. Collectively, these results indicate that loss of tight junction proteins occurs predominantly in the neocortex during Alzheimer's disease progression. Further, our findings provide a neuropathological clue as to how endothelial tight junction pathology may contribute to Alzheimer's disease pathogenesis in both synergistic and additive manners to typical amyloid-ß and tau pathologies.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Barrera Hematoencefálica/fisiología , Proteínas de Uniones Estrechas/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neocórtex/patología , Ovillos Neurofibrilares/patología , Fragmentos de Péptidos/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/fisiología , Proteínas tau/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(33): E6962-E6971, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28701379

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid-ß (Aß) peptide deposition in brain parenchyma as plaques and in cerebral blood vessels as cerebral amyloid angiopathy (CAA). CAA deposition leads to several clinical complications, including intracerebral hemorrhage. The underlying molecular mechanisms that regulate plaque and CAA deposition in the vast majority of sporadic AD patients remain unclear. The clusterin (CLU) gene is genetically associated with AD and CLU has been shown to alter aggregation, toxicity, and blood-brain barrier transport of Aß, suggesting it might play a key role in regulating the balance between Aß deposition and clearance in both brain and blood vessels. Here, we investigated the effect of CLU on Aß pathology using the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD amyloidosis on a Clu+/+ or Clu-/- background. We found a marked decrease in plaque deposition in the brain parenchyma but an equally striking increase in CAA within the cerebrovasculature of APP/PS1;Clu-/- mice. Surprisingly, despite the several-fold increase in CAA levels, APP/PS1;Clu-/- mice had significantly less hemorrhage and inflammation. Mice lacking CLU had impaired clearance of Aß in vivo and exogenously added CLU significantly prevented Aß binding to isolated vessels ex vivo. These findings suggest that in the absence of CLU, Aß clearance shifts to perivascular drainage pathways, resulting in fewer parenchymal plaques but more CAA because of loss of CLU chaperone activity, complicating the potential therapeutic targeting of CLU for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Clusterina/deficiencia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes
8.
Hum Mol Genet ; 26(14): 2690-2700, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28444230

RESUMEN

The ε4 allele of the APOE gene encoding apolipoprotein E (apoE) is a strong genetic risk factor for aging-related cognitive decline as well as late-onset Alzheimer's disease (AD) compared to the common ε3 allele. In the central nervous system, apoE is produced primarily by astrocytes and functions in transporting lipids including cholesterol to support neuronal homeostasis and synaptic integrity. Although mouse models and corresponding primary cells have provided valuable tools for studying apoE isoform-dependent functions, recent studies have shown that human astrocytes have a distinct gene expression profile compare with rodent astrocytes. Human induced pluripotent stem cells (iPSCs) derived from individuals carrying specific gene variants or mutations provide an alternative cellular model more relevant to humans upon differentiation into specific cell types. Thus, we reprogramed human skin fibroblasts from cognitively normal individuals carrying APOE ε3/ε3 or ε4/ε4 genotype to iPSC clones and further differentiated them into neural progenitor cells and then astrocytes. We found that human iPSC-derived astrocytes secreted abundant apoE with apoE4 lipoprotein particles less lipidated compared to apoE3 particles. More importantly, human iPSC-derived astrocytes were capable of promoting neuronal survival and synaptogenesis when co-cultured with iPSC-derived neurons with APOE ε4/ε4 astrocytes less effective in supporting these neurotrophic functions than those with APOE ε3/ε3 genotype. Taken together, our findings demonstrate APOE genotype-dependent effects using human iPSC-derived astrocytes and provide novel evidence that the human iPSC-based model system is a strong tool to explore how apoE isoforms contribute to neurodegenerative diseases.


Asunto(s)
Apolipoproteína E4/genética , Astrocitos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Alelos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/citología , Neuronas/metabolismo
9.
Adv Exp Med Biol ; 1128: 85-101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31062326

RESUMEN

Although the mechanisms by which Alzheimer's disease (AD) occurs remains unclear, it is widely accepted that both genetic and nongenetic components contribute to the pathogenesis of AD, especially the sporadic form of the disease. Nongenetic risk factors include diabetes and dyslipidemia, which are associated with impaired glucose and lipid metabolism, respectively. Apolipoprotein E (ApoE), one of the major lipid carriers in the brain, is the strongest genetic risk factor for late-onset AD. Several studies indicate that ApoE isoforms differentially affect not only lipid metabolism but also glucose metabolism or related pathways, suggesting that these risk factors contribute to the pathogenesis of AD through some common mechanisms. In this chapter, we discuss the roles of ApoE, lipids, and glucose in the pathogenesis of AD by considering their potential interactions.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Glucosa/metabolismo , Metabolismo de los Lípidos , Enfermedad de Alzheimer/genética , Encéfalo , Humanos
10.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934555

RESUMEN

Apolipoprotein E (apoE) is linked to the risk for Alzheimer's disease (AD) and thus has been suggested to be an important therapeutic target. In our drug screening effort, we identified Ondansetron (OS), an FDA-approved 5-HT3 antagonist, as an apoE-modulating drug. OS at low micromolar concentrations significantly increased apoE secretion from immortalized astrocytes and primary astrocytes derived from apoE3 and apoE4-targeted replacement mice without generating cellular toxicity. Other 5-HT3 antagonists also had similar effects as OS, though their effects were milder and required higher concentrations. Antagonists for other 5-HT receptors did not increase apoE secretion. OS also increased mRNA and protein levels of the ATB-binding cassette protein A1 (ABCA1), which is involved in lipidation and secretion of apoE. Accordingly, OS increased high molecular weight apoE. Moreover, the liver X receptor (LXR) and ABCA1 antagonists blocked the OS-induced increase of apoE secretion, indicating that the LXR-ABCA1 pathway is involved in the OS-mediated facilitation of apoE secretion from astrocytes. The effects of OS on apoE and ABCA1 were also observed in human astrocytes derived from induced pluripotent stem cells (iPSC) carrying the APOE ε3/ε3 and APOE ε4/ε4 genotypes. Oral administration of OS at clinically-relevant doses affected apoE levels in the liver, though the effects in the brain were not observed. Collectively, though further studies are needed to probe its effects in vivo, OS could be a potential therapeutic drug for AD by modulating poE metabolism through the LXR-ABCA1 pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas E/metabolismo , Receptores X del Hígado/metabolismo , Ondansetrón/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrocitos/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones Transgénicos
11.
Brain ; 140(12): 3301-3316, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161341

RESUMEN

Accumulation of amyloid-ß peptides is a dominant feature in the pathogenesis of Alzheimer's disease; however, it is not clear how individual amyloid-ß species accumulate and affect other neuropathological and clinical features in the disease. Thus, we compared the accumulation of N-terminally truncated amyloid-ß and full-length amyloid-ß, depending on disease stage as well as brain area, and determined how these amyloid-ß species respectively correlate with clinicopathological features of Alzheimer's disease. To this end, the amounts of amyloid-ß species and other proteins related to amyloid-ß metabolism or Alzheimer's disease were quantified by enzyme-linked immunosorbent assays (ELISA) or theoretically calculated in 12 brain regions, including neocortical, limbic and subcortical areas from Alzheimer's disease cases (n = 19), neurologically normal elderly without amyloid-ß accumulation (normal ageing, n = 13), and neurologically normal elderly with cortical amyloid-ß accumulation (pathological ageing, n = 15). We observed that N-terminally truncated amyloid-ß42 and full-length amyloid-ß42 accumulations distributed differently across disease stages and brain areas, while N-terminally truncated amyloid-ß40 and full-length amyloid-ß40 accumulation showed an almost identical distribution pattern. Cortical N-terminally truncated amyloid-ß42 accumulation was increased in Alzheimer's disease compared to pathological ageing, whereas cortical full-length amyloid-ß42 accumulation was comparable between Alzheimer's disease and pathological ageing. Moreover, N-terminally truncated amyloid-ß42 were more likely to accumulate more in specific brain areas, especially some limbic areas, while full-length amyloid-ß42 tended to accumulate more in several neocortical areas, including frontal cortices. Immunoprecipitation followed by mass spectrometry analysis showed that several N-terminally truncated amyloid-ß42 species, represented by pyroglutamylated amyloid-ß11-42, were enriched in these areas, consistent with ELISA results. N-terminally truncated amyloid-ß42 accumulation showed significant regional association with BACE1 and neprilysin, but not PSD95 that regionally associated with full-length amyloid-ß42 accumulation. Interestingly, accumulations of tau and to a greater extent apolipoprotein E (apoE, encoded by APOE) were more strongly correlated with N-terminally truncated amyloid-ß42 accumulation than those of other amyloid-ß species across brain areas and disease stages. Consistently, immunohistochemical staining and in vitro binding assays showed that apoE co-localized and bound more strongly with pyroglutamylated amyloid-ß11-x fibrils than full-length amyloid-ß fibrils. Retrospective review of clinical records showed that accumulation of N-terminally truncated amyloid-ß42 in cortical areas was associated with disease onset, duration and cognitive scores. Collectively, N-terminally truncated amyloid-ß42 species have spatiotemporal accumulation patterns distinct from full-length amyloid-ß42, likely due to different mechanisms governing their accumulations in the brain. These truncated amyloid-ß species could play critical roles in the disease by linking other clinicopathological features of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Corteza Cerebral/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Lóbulo Frontal/metabolismo , Humanos , Inmunoprecipitación , Técnicas In Vitro , Masculino , Espectrometría de Masas , Neocórtex/metabolismo , Neprilisina/metabolismo , Unión Proteica , Índice de Severidad de la Enfermedad , Proteínas tau/metabolismo
12.
J Neurosci ; 36(13): 3848-59, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030769

RESUMEN

In Alzheimer's disease (AD), the accumulation and deposition of amyloid-ß (Aß) peptides in the brain is a central event. Aß is cleaved from amyloid precursor protein (APP) by ß-secretase and γ-secretase mainly in neurons. Although mutations inAPP,PS1, orPS2cause early-onset familial AD,ABCA7encoding ATP-binding cassette transporter A7 is one of the susceptibility genes for late-onset AD (LOAD), in which itsloss-of-functionvariants increase the disease risk. ABCA7 is homologous to a major lipid transporter ABCA1 and is highly expressed in neurons and microglia in the brain. Here, we show that ABCA7 deficiency altered brain lipid profile and impaired memory in ABCA7 knock-out (Abca7(-/-)) mice. When bred to amyloid model APP/PS1 mice, plaque burden was exacerbated by ABCA7 deficit.In vivomicrodialysis studies indicated that the clearance rate of Aß was unaltered. Interestingly, ABCA7 deletion facilitated the processing of APP to Aß by increasing the levels of ß-site APP cleaving enzyme 1 (BACE1) and sterol regulatory element-binding protein 2 (SREBP2) in primary neurons and mouse brains. Knock-down of ABCA7 expression in neurons caused endoplasmic reticulum stress highlighted by increased level of protein kinase R-like endoplasmic reticulum kinase (PERK) and increased phosphorylation of eukaryotic initiation factor 2α (eIF2α). In the brains of APP/PS1;Abca7(-/-)mice, the level of phosphorylated extracellular regulated kinase (ERK) was also significantly elevated. Together, our results reveal novel pathways underlying the association of ABCA7 dysfunction and LOAD pathogenesis. SIGNIFICANCE STATEMENT: Gene variants inABCA7encoding ATP-binding cassette transporter A7 are associated with the increased risk for late-onset Alzheimer's disease (AD). Importantly, we found the altered brain lipid profile and impaired memory in ABCA7 knock-out mice. The accumulation of amyloid-ß (Aß) peptides cleaved from amyloid precursor protein (APP) in the brain is a key event in AD pathogenesis and we also found that ABCA7 deficit exacerbated brain Aß deposition in amyloid AD model APP/PS1 mice. Mechanistically, we found that ABCA7 deletion facilitated the processing of APP and Aß production by increasing the levels of ß-secretase 1 (BACE1) in primary neurons and mouse brains without affecting the Aß clearance rate in APP/PS1 mice. Our study demonstrates a novel mechanism underlying how dysfunctions of ABCA7 contribute to the risk for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos/genética , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Transducción de Señal/genética
13.
J Lipid Res ; 58(7): 1267-1281, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28381441

RESUMEN

Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-ß peptides (Aßs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aß-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aß-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.


Asunto(s)
Enfermedad de Alzheimer/etiología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Terapia Molecular Dirigida
14.
Hum Mol Genet ; 24(21): 6198-212, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26276810

RESUMEN

Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-Tau(P301L) mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets.


Asunto(s)
Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Tauopatías , Proteínas tau/metabolismo , Animales , Conducta Animal , Muerte Celular , Humanos , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/diagnóstico por imagen , Neuronas/patología , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Ultrasonografía , Proteínas tau/genética
15.
Ann Neurol ; 79(5): 758-774, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26933942

RESUMEN

OBJECTIVE: Apolipoprotein E (apoE), a major cholesterol carrier in the brain, is associated with a strong risk for Alzheimer disease. Compared to the risky APOE4 gene allele, the effects of the protective APOE2 gene allele are vastly understudied, and thus need to be further clarified. METHODS: We reviewed National Alzheimer's Coordinating Center clinical records and performed preclinical experiments using human apoE-targeted replacement (apoE-TR) mice, which do not show amyloid pathology. RESULTS: Clinically, the APOE2 allele was associated with less cognitive decline during aging. This effect was also seen in subjects with little amyloid pathology, or after adjusting for Alzheimer disease-related pathologies. In animal studies, aged apoE2-TR mice also exhibited preserved memory function in water maze tests. Regardless, apoE2-TR mice showed similar or greater age-related changes in synaptic loss, neuroinflammation, and oxidative stress compared to apoE3-TR or apoE4-TR mice. Interestingly, apoE concentrations in the cortex, hippocampus, plasma, and cerebrospinal fluid (CSF) were positively correlated with memory performance across apoE isoforms, where apoE2-TR mice had higher apoE levels. Moreover, apoE2-TR mice exhibited the lowest levels of cholesterol in the cortex, despite higher levels in CSF and plasma. These cholesterol levels were associated with apoE levels and memory performance across apoE isoforms. INTERPRETATION: APOE2 is associated with less cognitive decline during aging. This can occur independently of age-related synaptic/neuroinflammatory changes and amyloid accumulation. Higher levels of apoE and associated cholesterol metabolism in APOE2 carriers might contribute to this protective effect. Ann Neurol 2016;79:758-774.

16.
J Biol Chem ; 290(22): 14208-17, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25903128

RESUMEN

Pericytes play a critical role in the cerebrovasculature within the CNS. These small contractile cells produce large quantities of apolipoprotein E (apoE) whose isoforms influence cerebrovascular functions and determine the genetic risk for Alzheimer disease. Despite extensive studies on astrocyte-secreted apoE, which supports synapses by transporting cholesterol to neurons, the biochemical properties and function of apoE secreted by pericytes are not clear. Because pericytes mediate important functions in the CNS, including the initiation of glial scar formation, angiogenesis, and maintenance of the blood-brain barrier, we investigated the potential role of apoE in pericyte mobility. We found that knockdown of apoE expression significantly accelerates pericyte migration, an effect that can be rescued by exogenous apoE3, but not apoE4, a risk factor for Alzheimer disease. ApoE-regulated migration of pericytes also requires the function of the low-density lipoprotein receptor-related protein 1 (LRP1), a major apoE receptor in the brain that is abundantly expressed in pericytes. Because apoE-knockdown also leads to enhanced cell adhesion, we investigated the role of apoE in the regulation of the actin cytoskeleton. Interestingly, we found that the levels of active RhoA are increased significantly in apoE knockdown pericytes and that RhoA inhibitors blocked pericyte migration. Taken together, our results suggest that apoE has an intrinsic role in pericyte mobility, which is vital in maintaining cerebrovascular function. These findings provide novel insights into the role of apoE in the cerebrovascular system.


Asunto(s)
Apolipoproteínas E/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/irrigación sanguínea , Adhesión Celular , Movimiento Celular , Células Cultivadas , Circulación Cerebrovascular , Colesterol/metabolismo , Medios de Cultivo , Medios de Cultivo Condicionados/química , Citoesqueleto/metabolismo , Ensayo de Inmunoadsorción Enzimática , Silenciador del Gen , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Pericitos/metabolismo , ARN Interferente Pequeño/metabolismo
17.
Acta Neuropathol ; 132(2): 225-234, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27179972

RESUMEN

Cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease (AD). APOE4 is a strong genetic risk factor for both AD and CAA. Sex-dependent differences have been shown in AD as well as in cerebrovascular diseases. Therefore, we examined the effects of APOE4, sex, and pathological components on CAA in AD subjects. A total of 428 autopsied brain samples from pathologically confirmed AD cases were analyzed. CAA severity was histologically scored in inferior parietal, middle frontal, motor, superior temporal and visual cortexes. In addition, subgroups with severe CAA (n = 60) or without CAA (n = 39) were subjected to biochemical analysis of amyloid-ß (Aß) and apolipoprotein E (apoE) by ELISA in the temporal cortex. After adjusting for age, Braak neurofibrillary tangle stage and Thal amyloid phase, we found that overall CAA scores were higher in males than females. Furthermore, carrying one or more APOE4 alleles was associated with higher overall CAA scores. Biochemical analysis revealed that the levels of detergent-soluble and detergent-insoluble Aß40, and insoluble apoE were significantly elevated in individuals with severe CAA or APOE4. The ratio of Aß40/Aß42 in insoluble fractions was also increased in the presence of CAA or APOE4, although it was negatively associated with male sex. Levels of insoluble Aß40 were positively associated with those of insoluble apoE, which were strongly influenced by CAA status. Pertaining to insoluble Aß42, the levels of apoE correlated regardless of CAA status. Our results indicate that sex and APOE genotypes differentially influence the presence and severity of CAA in AD, likely by affecting interaction and aggregation of Aß40 and apoE.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Encéfalo/patología , Angiopatía Amiloide Cerebral/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/patología , Femenino , Genotipo , Humanos , Masculino , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Caracteres Sexuales
18.
J Biol Chem ; 289(16): 11282-11292, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24599963

RESUMEN

Apolipoprotein E (apoE) is the major cholesterol transport protein in the brain. Among the three human APOE alleles (APOE2, APOE3, and APOE4), APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease (AD). The accumulation of amyloid-ß (Aß) is a central event in AD pathogenesis. Increasing evidence demonstrates that apoE isoforms differentially regulate AD-related pathways through both Aß-dependent and -independent mechanisms; therefore, modulating apoE secretion, lipidation, and function might be an attractive approach for AD therapy. We performed a drug screen for compounds that modulate apoE production in immortalized astrocytes derived from apoE3-targeted replacement mice. Here, we report that retinoic acid (RA) isomers, including all-trans-RA, 9-cis-RA, and 13-cis-RA, significantly increase apoE secretion to ~4-fold of control through retinoid X receptor (RXR) and RA receptor. These effects on modulating apoE are comparable with the effects recently reported for the RXR agonist bexarotene. Furthermore, all of these compounds increased the expression of the cholesterol transporter ABCA1 and ABCG1 levels and decreased cellular uptake of Aß in an apoE-dependent manner. Both bexarotene and 9-cis-RA promote the lipidation status of apoE, in which 9-cis-RA promotes a stronger effect and exhibits less cytotoxicity compared with bexarotene. Importantly, we showed that oral administration of bexarotene and 9-cis-RA significantly increases apoE, ABCA1, and ABCG1 levels in mouse brains. Taken together, our results demonstrate that RXR/RA receptor agonists, including several RA isomers, are effective modulators of apoE secretion and lipidation and may be explored as potential drugs for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Lipoilación , Proteínas del Tejido Nervioso/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Alelos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Anticarcinógenos/farmacología , Apolipoproteínas E/genética , Astrocitos/patología , Bexaroteno , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Transformada , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Receptores de Ácido Retinoico/genética , Receptores X Retinoide/genética , Tetrahidronaftalenos/farmacología , Tretinoina/análogos & derivados , Tretinoina/farmacología
19.
Biochem Biophys Res Commun ; 457(2): 194-9, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25545059

RESUMEN

γ-Secretase cleaves amyloid ß-precursor protein (APP) to generate amyloid-ß peptide (Aß), which is a causative molecule of Alzheimer disease (AD). The C-terminal length of Aß, which is determined by γ-secretase activity, determines the aggregation and deposition profiles of Aß, thereby affecting the onset of AD. In this study, we found that the synthetic ceramide analogues dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and (1S,2R-d-erythro-2-N-myristoylamino)-1-phenyl-1-propanol (DMAPP) modulated γ-secretase-mediated cleavage to increase Aß42 production. Unexpectedly, PDMP and DMAPP upregulated Aß42 production independent of alteration of ceramide metabolism. Our results propose that synthetic ceramide analogues function as novel γ-secretase modulators that increase Aß42, and this finding might lead to the understanding of the effect of the lipid environment on γ-secretase activity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/biosíntesis , Alcoholes Bencílicos/farmacología , Ceramidas/química , Morfolinas/química , Fragmentos de Péptidos/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Alcoholes Bencílicos/química , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ratones , Morfolinas/farmacología , Mutación/genética , Regulación hacia Arriba/efectos de los fármacos
20.
Brain ; 137(Pt 5): 1533-49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24625695

RESUMEN

Recent studies suggest that subcortical structures, including striatum, are vulnerable to amyloid-ß accumulation and other neuropathological features in familial Alzheimer's disease due to autosomal dominant mutations. We explored differences between familial and sporadic Alzheimer's disease that might shed light on their respective pathogenic mechanisms. To this end, we analysed 12 brain regions, including neocortical, limbic and subcortical areas, from post-mortem brains of familial Alzheimer's disease (n = 10; age at death: 50.0 ± 8.6 years) with mutations in amyloid precursor protein (APP) or presenilin 1 (PSEN1), sporadic Alzheimer's disease (n = 19; age at death: 84.7 ± 7.8 years), neurologically normal elderly without amyloid-ß accumulation (normal ageing; n = 13, age at death: 82.9 ± 10.8 years) and neurologically normal elderly with extensive cortical amyloid-ß deposits (pathological ageing; n = 15; age at death: 92.7 ± 5.9 years). The levels of amyloid-ß40, amyloid-ß42, APP, apolipoprotein E, the synaptic marker PSD95 (now known as DLG4), the astrocyte marker GFAP, other molecules related to amyloid-ß metabolism, and tau were determined by enzyme-linked immunosorbent assays. We observed that familial Alzheimer's disease had disproportionate amyloid-ß42 accumulation in subcortical areas compared with sporadic Alzheimer's disease, whereas sporadic Alzheimer's disease had disproportionate amyloid-ß42 accumulation in cortical areas compared to familial Alzheimer's disease. Compared with normal ageing, the levels of several proteins involved in amyloid-ß metabolism were significantly altered in both sporadic and familial Alzheimer's disease; however, such changes were not present in pathological ageing. Among molecules related to amyloid-ß metabolism, the regional distribution of PSD95 strongly correlated with the regional pattern of amyloid-ß42 accumulation in sporadic Alzheimer's disease and pathological ageing, whereas the regional distribution of APP as well as ß-C-terminal fragment of APP were strongly associated with the regional pattern of amyloid-ß42 accumulation in familial Alzheimer's disease. Apolipoprotein E and GFAP showed negative regional association with amyloid-ß (especially amyloid-ß40) accumulation in both sporadic and familial Alzheimer's disease. Familial Alzheimer's disease had greater striatal tau pathology than sporadic Alzheimer's disease. In a retrospective medical record review, atypical signs and symptoms were more frequent in familial Alzheimer's disease compared with sporadic Alzheimer's disease. These results suggest that disproportionate amyloid-ß42 accumulation in cortical areas in sporadic Alzheimer's disease may be mediated by synaptic processes, whereas disproportionate amyloid-ß42 accumulation in subcortical areas in familial Alzheimer's disease may be driven by APP and its processing. Region-specific amyloid-ß42 accumulation might account for differences in the relative amounts of tau pathology and clinical symptoms in familial and sporadic Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Sinapsis/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Ovillos Neurofibrilares/patología , Cambios Post Mortem , Presenilina-1/genética , Sinapsis/patología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA