RESUMEN
The pollutant removal performance of traditional horizontal subsurface flow (HSSF) constructed wetlands (CWs) is limited because of the dissolved oxygen (DO) supply is insufficient. The aeration of HSSF CWs usually improves their pollutant removal performance, but a high DO induces the accumulation of nitrate-nitrogen (NO3--N) and suppresses the improvement of total nitrogen (TN) removal. In this study, an integrated solution that involved in-tank front aeration and internal recirculation (FAIR) was used to improve the pollutant removal performance of HSSF CWs. Based on the experimental results, the FAIR system significantly increased the removal efficiencies of biochemical oxygen demand (BOD) from 53.8-76.0% to 82.0-91.7% and reduced the BOD concentration in the effluent to below 10 mg L-1. The removal efficiency of ammonia-nitrogen (NH3-N) increased from 15.1-78.3% to 98.5-98.6% while the removal efficiencies of the total Kjeldahl nitrogen (TKN) of the control and FAIR HSSF CWs were 18.2-77.1% and 93.5-94.3%, respectively. HSSF CWs with FAIR outperformed aerated HSSF CWs in the removal of NH3-N and TKN. The effects of two recirculation flow ratios (Rr = recirculation flow rate/influent flow rate), 14.3 and 3.0, on the improvement of pollutant removal performance were investigated. The lower Rr did not significantly affect the improvement of BOD, NH3-N, and TKN, but a higher Rr resulted in more severe accumulation of NO3--N. The removal efficiency of TN in control HSSF CWs ranged from 20.4% to 75.5%, and in the FAIR HSSF CW was 71.6% for Rr = 14.3 and 81.3% for Rr = 3.0. However, the FAIR system did not enhance the removal performance of total phosphorus, suggesting that the DO level and internal recirculation were not dominant mechanisms for the removal of phosphorous. The easy maintenance of the FAIR system made it a superior modification for improving the pollutant removal performance of HSSF CWs.
Asunto(s)
Contaminantes Ambientales , Humedales , Amoníaco , Nitrógeno , Fósforo , Eliminación de Residuos LíquidosRESUMEN
With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.
Asunto(s)
Microplásticos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Microplásticos/efectos adversos , Plásticos , Cirrosis HepáticaRESUMEN
Municipal effluents discharged from wastewater treatment plants (WWTPs) are considered major contributors of nanoplastics (NPs) and dissolved effluent organic matter (dEfOM) to environments. Due to their small sizes, NPs can travel easily in waterways and evade wastewater treatment processes, and may directly interact with dEfOM, altering their environmental fates. However, although much research has examined the impact of natural organic matter on NPs, the interactions between NPs and dEfOM remain unexplored. This study investigated the influences of NPs on the behavior and capacity of dEfOM aggregation and surface granularity, and identified the possible aggregation mechanism. We also adjusted the salinity of water samples to simulate scenarios based on WWTP-sea continuums. Our data suggest that dEfOM can self-assemble with 55 nm polystyrene NPs to form microgels, particularly under high salinity conditions. NPs accelerates the formation speed and number of dEfOM aggregates, but the sizes of the aggregates remain largely unchanged. The relative particle counts at a salinity of 34 psu increased by 300 % compared to the control group. The potential mechanism behind NPs-microgels aggregation is likely driven by the synergistic effect of the divalent ion crosslinking and hydrophobic interactions between EfOM and NPs. Notably, NPs incorporation into microgels decreases the surface granularity, thereby possibly affecting settling velocity and colonization of aggregates, as well as microbial attachment and community diversity. Overall, our findings demonstrate the potential influence of NPs on dEfOM assembly and surface properties following effluent discharge, and can inspire further relevant studies on microorganism interactions, removal technologies, and the environmental transport of NPs.
RESUMEN
Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.
Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , Contaminantes Químicos del Agua , Ésteres/análisis , Organofosfatos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis , Aire/análisis , Agua/química , Aguas Residuales/química , Atmósfera/química , EcosistemaRESUMEN
Mucus, composed significantly of glycosylated mucins, is a soft and rheologically complex material that lines respiratory, reproductive, and gastrointestinal tracts in mammals. Mucus may present as a gel, as a highly viscous fluid, or as a viscoelastic fluid. Mucus acts as a barrier to the transport of harmful microbes and inhaled atmospheric pollutants to underlying cellular tissue. Studies on mucin gels have provided critical insights into the chemistry of the gels, their swelling kinetics, and the diffusion and permeability of molecular constituents such as water. The transport and dispersion of micron and sub-micron particles in mucin gels and solutions, however, differs from the motion of small molecules since the much larger tracers may interact with microstructure of the mucin network. Here, using brightfield and fluorescence microscopy, high-speed particle tracking, and passive microrheology, we study the thermally driven stochastic movement of 0.5-5.0 µm tracer particles in 10% mucin solutions at neutral pH, and in 10% mucin mixed with industrially relevant dust; specifically, unmodified limestone rock dust, modified limestone, and crystalline silica. Particle trajectories are used to calculate mean square displacements and the displacement probability distributions; these are then used to assess tracer diffusion and transport. Complex moduli are concomitantly extracted using established microrheology techniques. We find that under the conditions analyzed, the reconstituted mucin behaves as a weak viscoelastic fluid rather than as a viscoelastic gel. For small- to moderately sized tracers with a diameter of lessthan 2 µm, we find that effective diffusion coefficients follow the classical Stokes-Einstein relationship. Tracer diffusivity in dust-laden mucin is surprisingly larger than in bare mucin. Probability distributions of mean squared displacements suggest that heterogeneity, transient trapping, and electrostatic interactions impact dispersion and overall transport, especially for larger tracers. Our results motivate further exploration of physiochemical and rheological mechanisms mediating particle transport in mucin solutions and gels.
RESUMEN
The transport and ultimate fate of per- and polyfluoroalkyl substances (PFASs) are generally considered to be influenced by partitioning behavior between water, suspended particulate matters (SPM), and sediments. This study examined the distribution and partitioning of the PFASs in the water, SPM, and sediments in a densely populated urban river-coastal system. The total concentrations of eight PFASs (∑8 PFASs) in the water phase, SPM, and sediments varied from 0.59 to 7.40 ng/L, 0.54 to 9.08 ng/g, and 0.05 to 0.13 ng/g, respectively. The PFAS concentrations in the water and SPM phase decreased as the salinity increased, confirming contaminant inputs from the upstream of the river to the estuary zone. Notably, the positive correlation between SPM-bound PFASs and transparent exopolymer particles (TEPs) content, providing first evidence that TEPs may accumulate and concentrate more PFASs on the SPM. Collectively, this results offers useful information about roles of TEPs in determining environmental fate of PFASs.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ríos , Matriz Extracelular de Sustancias Poliméricas/química , Material Particulado/análisis , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua , China , Sedimentos GeológicosRESUMEN
Wastewater treatment plant effluent is considered an important hotspot of dissolved organic matter. The behavior and transformation of dissolved effluent organic matter (dEfOM) regulate particle sedimentation, pollutant fate, microbial attachment, and biofilm formation. However, studies have so far focused on the transformation of marine and riverine organic matter, and the current knowledge of dEfOM behavior is still limited. Fluctuations in water conditions, especially temperature, may directly alter the size, assembly speed, and structure of microgels, thereby potentially disturbing fate and the transportation of organic matter. In this study, we firstly investigated the effects of temperature on the behavior and capacity of dEfOM assembly into microgels and the possible mechanism. The microgel size and granularity of dEfOM were monitored by flow cytometry. Our results suggest that, with regard to microgels, a higher temperature leads to a higher assembly capacity but also a decrease in the size distribution. By contrast, assembly at 4 °C reduces the relative assembly capacity but increases the microgel size and granularity. The size distribution of the formed microgels at the various temperatures was ordered as follows: 4 °C > 20 °C > 35 °C. The size reduction in dEfOM assembly may be closely tied to the enhancement of hydrophobic interactions. The reduction in microgel granularity in warm conditions (35 °C) in terms of the effluent water may be caused by thermally induced condensation. Overall, the findings demonstrate the effects of temperature on dEfOM assembly and can facilitate further relevant studies on aquatic organic particle formation during current global warming scenarios.
RESUMEN
The presence of microplastics (MPs) in marine environments has become increasingly apparent. Owing to the lack of effective solid waste management, Indonesia is the second largest producer of ocean plastic waste after China. Currently, information about pollution of MPs in the sediments of East Surabaya, Indonesia, is not available, and this issue is addressed in this study for the first time. Sediment samples were collected from 16 sampling sites along urban and mangrove coastal areas. MPs were observed in most of the sampling sites, with abundances ranging from ND (not detected) to 598 items/kg. MP shapes constituted fragments (30%), foam (28%), granules (22%), and fibers (20%). The 500-1000 µm fraction was the dominant size of MPs. Polypropylene was the major polymer constituent, followed by high-density polyethylene and polyethylene. Findings from Spearman's correlation coefficients, principal component analysis, and hierarchical cluster analysis reveal that the spatial pattern of MPs is closely related to coastal characteristics and population density. MPs in different coastal regions were assessed by the polymer risk index. Results reveal that coastal areas in the Bulak district exhibit the highest risk. Our results confirm the prevalence of MPs as anthropogenic pollutants in East Surabaya and highlight the importance of management action and education on environmental protection for the mitigation of MP pollution.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Sedimentos Geológicos/análisis , Indonesia , Microplásticos , Plásticos/análisis , Polietileno/análisis , Polipropilenos/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
The pervasiveness of microplastics (MPs) in global oceans is raising concerns about their adverse impacts on ecosystems. The mechanistic understanding of MP transport is critical for evaluating its fate, flux, and ecological risks specifically. Currently, bubble bursting is believed to represent an important route for MP transfer from sea surfaces to the atmosphere. However, the detailed mechanisms of the complex physico-chemical interactions between MPs, water composition, and gel particles in the air-sea interface remain unknown. Our results suggested three steps for MP transfer between air-sea phases: (1) MPs incorporating into gel aggregates in the water column; (2) further accumulation of plastic-gel aggregate in the surface layer phase; finally (3) ejection of aggregates from the sea when bubbles of trapped air rise to the surface and burst. The water composition (e.g., high salinity, gel concentration and viscosity) can modulate plastic-gel aggregation and subsequent transport from water to the atmosphere. The possible mechanism may be closely tied to the formation of plastic-gel via cation-linking bridges, thereby enhancing plastic-gel ejection into air. Collectively, this work offers unique insights into the role of marine plastic-gels in determining MP fate and transport, especially at air-sea interfaces. The data also provide a better understanding of the corresponding mechanism that may explain the fates of missing plastics in the ocean.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Atmósfera , Ecosistema , Monitoreo del Ambiente , Geles , Plásticos/química , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
The incineration of municipal solid waste has been important in waste management, but it raises another environmental issue concerning residue treatment. This study describes an innovative use of naturally aged incineration bottom ash (AIBA) as an alternative substrate for horizontal subsurface flow (HSSF) constructed wetlands (CW). Although experimental results from a period lasting for 396 days only revealed slightly higher removal ratios in HSSF with AIBA (HSSF-E) than in HSSF-traditional pebble beds (HSSF-C), increasing from 67% to 76% for BOD, 44%-51% for TKN, 47%-54% for NH3-N, and 44%-52% for TN. The data indicate that the use of AIBA in HSSF CW can achieves a certain removal efficiency of BOD and nitrogen species. Interestingly, the total phosphorus removal rates also increased significantly from 20% in HSSF-C to 36% in HSSF-E. These observations on the use of AIBA in HSSF CW confirmed that AIBA is a suitable alternative for use as a substrate for HSSF CWs and identified an additional way to reuse incineration bottom ash. Design criteria for a CW using AIBA as a partial substrate is proposed to improve the pollutant removal performance of HSSF CWs.
Asunto(s)
Contaminantes Ambientales , Humedales , Ceniza del Carbón , Incineración , Nitrógeno/análisis , Fósforo , Residuos Sólidos , Eliminación de Residuos Líquidos/métodos , Aguas ResidualesRESUMEN
Microplastics (MPs) are ubiquitous in oceans. Their transboundary transport and fate have aroused global attention. Taiwan is located close to the western boundary current-Kuroshio, is an excellent location to study of MP mobility in the global current and Pacific Garbage Patch. This study is the first investigation to understand the microplastic contamination from Taiwan to the Kuroshio. MP concentrations in the area varied from N.D. to 0.15 items m-3, with an average concentration of 0.05 ± 0.03 items m-3. The majority of MPs were polypropylene, polyethylene, polyethylene and terephthalate. We found two MP hotspots near the coastal zone. One additional hotspot was also identified in the "pristine" Kuroshio suggesting rivers and local currents may play critical roles in transporting or injecting MPs from Taiwan into the North Pacific Gyre. These findings suggest that marine environments are altered by anthropogenic disposal and provide needed data for modelling and prediction of MPs.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Ríos , Contaminantes Químicos del Agua/análisisRESUMEN
Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air-sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.
RESUMEN
Organic particle dynamics in the surface ocean plays a critical part in the marine carbon cycle. Aggregation of marine organic particles drives their downward transport to support various marine organisms on their transit to the sediments. Extracellular polymeric substances (EPS) from various microbes are a major contributor to the oceanic organic particle pool. The stickiness of EPS is expected to play a determining role in the aggregation process of particles; however, stickiness parameters are usually indirectly estimated through data fitting without direct assessment. Here a magnetic tweezer method was developed to quantitatively assess the stickiness of three model EPS produced by: Amphora sp., (diatom), Emiliania huxleyi (coccolithophore), and Sagittula stellata (bacteria), under different in vitro environmental conditions (salinity or EDTA complexed cations) and surface matrices (EPS-EPS and bare glass). Our results showed the stickiness of three microbial EPS decreasing for S. stellata > E. huxleyi > Amphora sp., in line with their decreasing protein-to-carbohydrate (P/C) ratios (related to their relative hydrophobicity). The data not only emphasize the importance of hydrophobicity on EPS stickiness, but also demonstrates that salinity and the nature of the substrate surface can influence the stickiness. Furthermore, we investigated stickiness between various types of EPS, and the observed selective stickiness of EPS between species may shed light on the interactions among heterogeneous marine microorganisms. Overall, this newly developed system provides a platform to assess the EPS stickiness to advance our understanding of the aggregation and sedimentation process of organic particles that are critical for the fate of organic carbon as well as for biofilm formation and microbial colonization of surfaces in the ocean.
Asunto(s)
Diatomeas , Rhodobacteraceae , Matriz Extracelular de Sustancias Poliméricas , Fenómenos MagnéticosRESUMEN
The pervasive presence of plastic waste in the aquatic environment is widely viewed as one of the most serious environmental challenges for current and future generations. Microplastics ultimately degrade into nano and smaller-sizes. In turn, their biological and ecological impacts become more complicated and ambiguous. Nano-plastic particles travel from freshwater systems to estuarine and oceanic regions, during which they can interact with dissolved organic matter (DOM) to form microgels. Microgel formation is ubiquitous in aquatic systems, serving as a shunt between DOM and particulate organic matter (POM), as well as playing key roles in particle aggregation/sedimentation and pollutant transport. Currently the influences and mechanisms of the aggregation behavior and environmental fate of nano-plastics in different aquatic environments is poorly understood. Here, we report that 25 nm polystyrene nano-particles in lake and river water can promote POM (microgel) formation and accelerate the DOM-POM transition. We also adjusted various salinities of water samples to simulate scenarios based on plastic transport in waters flowing from rivers to seas. The results indicate polystyrene nanoparticles can interact with organic matter to form large organic particles, which may undergo further settling in response to specific salinity levels. Polystyrene-induced microgel formation appears to involve the hydrophobic interactions between plastics and DOM. Our data provides much needed information for modeling and understanding the retention and sedimentation of nano-plastics. We show that nano-plastics alter the DOM-POM shunt to cause unanticipated perturbations in the functionality of aquatic ecosystems.
RESUMEN
The substantial increase in plastic pollution in marine ecosystems raises concerns about its adverse impacts on the microbial community. Microorganisms (bacteria, phytoplankton) are important producers of exopolymeric substances (EPS), which govern the processes of marine organic aggregate formation, microbial colonization, and pollutant mobility. Until now, the effects of nano- and micro-plastics on characteristics of EPS composition have received little attention. This study investigated EPS secretion by four phytoplankton species following exposure to various concentrations of polystyrene nano- and microplastics (55 nm nanoparticles; 1 and 6 µm microparticles). The 55 nm nanoparticles induced less growth/survival (determined on a DNA basis) and produced EPS with higher protein-to-carbohydrate (P/C) ratios than the exposure to microplastic particles. The amount of DNA from the four marine phytoplankton showed a higher negative linear correlation with increasing P/C ratios, especially in response to nanoplastic exposure. These results provide evidence that marine phytoplankton are quite sensitive to smaller-sized plastics and actively modify their EPS chemical composition to cope with the stress from pollution. Furthermore, the release of protein-rich EPS was found to facilitate aggregate formation and surface modification of plastic particles, thereby affecting their fate and colonization. Overall, this work offers new insights into the potential harm of different-sized plastic particles and a better understanding of the responding mechanism of marine phytoplankton for plastic pollution. The data also provide needed information about the fate of marine plastics and biogenic aggregation and scavenging processes.
Asunto(s)
Fitoplancton , Contaminantes Químicos del Agua , Ecosistema , Matriz Extracelular de Sustancias Poliméricas , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Alkylphenol ethoxylates (APEOs) are one of the most widely used classes of surfactants, but they are also ubiquitous environmental pollutants and known endocrin-disrupting chemicals. This study is the first to investigate the spatiotemporal variations and possible sources of APEOs and their metabolites, including nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs), in coastal sediments off southwestern Taiwan. The highest APEO concentration in the dry season was observed for the Kaohsiung coastal area, whereas the highest alkylphenol (AP) concentration in the wet season was found offshore at the Tainan Canal exit. No continuous accumulation of alkylphenol metabolites was evident in the area. One possible reason is that seasonal current and wind waves disperse the coastal pollutants. Application of multivariate statistical tools (hierarchical cluster analysis and principal component analysis) confirmed the role of rivers and the Tainan Canal in transporting contaminants to coastal environments, suggesting influences of industrial and human activities on APEO distribution. A further comparison with the predicted no-effect concentrations (PNECs) proposed by the European Union indicates that nonylphenol (NP) and octylphenol (OP) might pose potential ecological risks to the aquatic environment in the studied area. These findings provide useful information for environmental policy implementation and ecological assessments of different types of endocrine-disrupting chemicals and raise warnings about surfactant applications.
Asunto(s)
Ecología , Disruptores Endocrinos/análisis , Contaminantes Ambientales/análisis , Análisis Espacio-Temporal , Tensoactivos/análisis , Contaminantes Químicos del Agua/análisis , Óxido de Etileno/metabolismo , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Fenoles , Estaciones del Año , TaiwánRESUMEN
Spilled oil treated with Corexit dispersant can cause unintended impacts on marine environment systems including altering marine organic matter dynamics; however, impacts on microgels and marine oil snow (MOS) formation are still debated and remain to be fully understood. Extracellular polymeric substances (EPS) are a major source of marine organic carbon for MOS and microgel formation. EPS initial aggregation plays key roles in the oil degrading process and various biogeochemical reactions. Here we used four types of EPS with water accommodated fraction (WAF), chemically-enhanced WAF (CEWAF) and Corexit, to represent potential situations during oil spills and post-application of Corexit. We found that Corexit alone can inhibit EPS aggregation and disperse pre-existing microgels. CEWAF can enhance EPS aggregation with efficiency by up to 80%-100% and more aggregates accumulated within the air-water interface. Additionally, more hydrophobic EPS aggregates showed high resistance to Corexit dispersion while hydrophilic EPS were more sensitive. Effects of oil spills on marine gel particle formation are primarily determined by chemical characteristics (hydrophobicity and protein content) of the constituent EPS. This study offers unique insights for organic particle dynamics and identifies controlling factors for MOS or gel particles associated with oil spills and Corexit dispersant used.
Asunto(s)
Ambiente , Restauración y Remediación Ambiental/métodos , Matriz Extracelular de Sustancias Poliméricas/química , Contaminación por Petróleo , Petróleo , Organismos Acuáticos/metabolismo , Fitoplancton/metabolismo , Tensoactivos/químicaRESUMEN
Rivers drive large amounts of terrestrial and riverine organic matter into oceans. These organic materials may alter the self-assembly of marine dissolved organic matter (DOM) polymers into microgels and can even affect the behavior of existing natural microgels. We used Suwannee River humic acid, fulvic acid, and natural organic matter as a model of riverine organic matter (ROM) to investigate the impacts of ROM input on DOM polymer and microgel conversion. Our results indicated that the release of extra ROM, even at low concentrations (0.1-10â¯mgâ¯L-1), into the marine organic matter pool decreased the size of self-assembled DOM polymers (from 4-5⯵m toâ¯<â¯1⯵m) and dispersed the existing natural microgels into smaller particles (from 4-5⯵m to 2-3⯵m). The particle size of the microgel phase was also less sensitive than that of the DOM polymers to external changes (addition of ROM). This size reduction in DOM aggregation and existing microgels may be closely tied to the surface chemistry of the organic matter, such as negative surface charge stabilization and Ca2+ cross-linking bridges. These findings reveal that ROM inputs may therefore impede the self-assembly of DOM polymers into particulate organic matter and reduce the sedimentation flux of organic carbon and other elements from surface water to the deep ocean, thereby disturbing the biological pump, the downward transportation of nutrients, and the marine organic carbon cycle.
Asunto(s)
Benzopiranos , Sustancias Húmicas , Ríos , Ciclo del Carbono , Geles , Océanos y Mares , Material Particulado , PolímerosRESUMEN
Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal.
Asunto(s)
Restauración y Remediación Ambiental/métodos , Grafito/química , Petróleo/metabolismo , Adsorción , Petróleo/análisisRESUMEN
The possible impact of three types of anthropogenic surfactants on the ability of marine dissolved organic carbon (DOC) to form self-assembled microgels was evaluated. The behavior of existing native microgels was also examined in the presence of surfactants. These results reveal that the release of surfactants even at low concentrations into the aquatic environment could effectively hinder the self-assembly of DOC polymers. The extent of the size reduction had the following order: anionic, cationic, and non-ionic. Furthermore, charged surfactants can disrupt existing native microgels, converting large assemblies into smaller particles. One possible mechanisms is that surfactants are able to enhance the stability of DOC polymers and disrupt aggregates due to their surface charges and protein-denaturing activities. These findings suggest that the ecological system is altered by anthropogenic surfactants, and provide useful information for ecological assessments of different types of surfactants and raise warnings about surfactant applications.