Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Org Biomol Chem ; 22(36): 7395-7410, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177253

RESUMEN

A simple and direct synthesis of 2,6-diiodophenylethanol building blocks through highly regioselective metalation (MIE)/oxirane SN2-type ring opening of 1,2,3-triiodobenzene is described. A significant impact of the nature of the R1 group on the reactivity of the reaction was discovered but not in terms of site-selectivity. The MIE quenching step is easily controlled by the use of slow-reacting electrophiles "oxiranes" providing solely the ortho-diiodinated homobenzylic alcohol derivatives (internal products) in excellent site-selectivity and with stereoretention. The reaction proceeded without any additives to activate the oxiranes and tolerated a wide range of substrates. The reaction of electron-deficient 1,2,3-triiodoarene systems and neutral oxiranes under the optimized conditions provided the highest isolated yields. The reaction is facile, scalable, efficient, general in scope, and generates handy precursors for further chemical manipulation. In silico interaction analysis revealed that compounds 7a, 7p, 7t and 7z established favourable interactions with the receptors IDO and TDO. Moreover, the molecular simulation results revealed stable dynamics, minimal internal fluctuations, tighter packing and more favourable dynamic features. Furthermore, the 7a-IDO reported a TBE of -26.22 ± 0.24 kcal mol-1, 7t-TDO reported a TBE of -46.66 ± 0.27 kcal mol-1, 7p-TDO reported a TBE of -48.02 ± 0.29 kcal mol-1 while 7z-TDO reported a TBE of -48.51 ± 0.28 kcal mol-1. This shows that these compounds potentially interact with IDO and TDO and consequently cause the inhibition of these targets. Moreover, the BFE results also revealed that this combination suggests that the gas-phase interactions between the components are favorable, but the solvation of the system is unfavorable. In the context of binding, it further means that the protein and ligand have attractive forces when in close proximity as seen in the gas phase, but when solvated, the system experiences an increase in free energy due to interactions with the solvent. This further implies that the binding might be enthalpically favorable due to favorable gas-phase interactions but entropically unfavorable due to unfavorable solvation effects. Our analysis shows that our designed compounds have unmatched pharmacological potential, far surpassing previously reported compounds. This highlights the innovative nature of these derivatives and sets a new benchmark in IDO and TDO drug discovery, indicating their significant potential as effective anticancer inhibitors.


Asunto(s)
Antineoplásicos , Indolamina-Pirrol 2,3,-Dioxigenasa , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Humanos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estereoisomerismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
2.
J Org Chem ; 88(2): 863-870, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36622848

RESUMEN

The amide bond is prominent in natural and synthetic organic molecules endowed with activity in various fields. Among a wide array of amide synthetic methods, substitution on a pre-existing (O)C-N moiety is an underexplored strategy for the synthesis of amides. In this work, we disclose a new protocol for the defluorinative arylation of aliphatic and aromatic trifluoroacetamides yielding aromatic amides. The mechanochemically induced reaction of either arylboronic acids, trimethoxyphenylsilanes, diaryliodonium salts, or dimethyl(phenyl)sulfonium salts with trifluoroacetamides affords substituted aromatic amides in good to excellent yields. These nickel-catalyzed reactions are enabled by C-CF3 bond activation using Dy2O3 as an additive. The current protocol provides versatile and scalable routes for accessing a wide variety of substituted aromatic amides. Moreover, the protocol described in this work overcomes the drawbacks and limitations in the previously reported methods.

3.
Org Biomol Chem ; 21(32): 6549-6555, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37523214

RESUMEN

The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.

4.
J Enzyme Inhib Med Chem ; 38(1): 2220084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37318308

RESUMEN

Boronic acids/esters have recently emerged in the field of medicinal and pharmaceutical research due to their exceptional oxophilicity, low toxicity, and unique structure. They are known as potent enzyme inhibitors, cancer therapy capture agents, and can mimic certain types of antibodies to fight infections. They have been designed and developed into drugs, and this approach has emerged in the last 20 years. Five boronic acid drugs have been approved by the FDA and Health Canada, two of which are used to treat cancer, specifically multiple myeloma. The purpose of this review is to investigate boronic acid/ester derivatives as potential pharmaceutical agents as well as the mechanism of action. It will concentrate on six types of cancer: multiple myeloma, prostate cancer, breast cancer, lung cancer, cervical cancer, and colon cancer. Some newly developed boron-containing compounds have already demonstrated highly promising activities, but further investigation is required before final conclusions can be drawn.


Asunto(s)
Mieloma Múltiple , Profármacos , Humanos , Profármacos/farmacología , Profármacos/química , Ésteres/química , Mieloma Múltiple/tratamiento farmacológico , Ácidos Borónicos/farmacología , Compuestos de Boro/química
5.
J Am Chem Soc ; 144(23): 10438-10445, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35652785

RESUMEN

Increased interest in the trifluoromethoxy group in organic synthesis and medicinal chemistry has induced a demand for new, selective, general, and faster methods applicable to natural products and highly functionalized compounds at a later stage of hit-to-lead campaigns. Applying pyrylium tetrafluoroborate, we have developed a mechanochemical protocol to selectively substitute the aromatic amino group with the OCF3 functionality. The scope of our method includes 31 examples of ring-substituted anilines, including amides and sulfonamides. Expected SNAr products were obtained in excellent yields. The presented concise method opens a pathway to new chemical spaces for the pharmaceutical industry.


Asunto(s)
Aminas , Éteres , Amidas , Aminas/química , Compuestos de Anilina/química , Catálisis , Éteres/química
6.
J Biomol Struct Dyn ; : 1-13, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686915

RESUMEN

Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly important, as it influences the activity of mTOR in aging and its associated pathologies. It is important to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine affect the binding of leucine. Therefore, this study was committed to investigating the impact of non-synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. Moreover, these mutations compromised the dynamic stability by altering the conformational flexibility, sampling time, and leucine-induced structural constraints that consequently caused variation in the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the regions 217-339 and 371-380 demonstrated a higher fluctuation. Noteworthy, these regions correspond to a linker (217-339) and a loop (371-380) that cover the leucine binding cavity that is critical for the 'latch' mechanism in the N-terminal, which is essential for leucine binding. Further validation of reduced binding and modified internal motions caused by the mutants was obtained through binding free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to pave the way for innovative strategies to combat the inevitable tide of aging and its associated diseases.Communicated by Ramaswamy H. Sarma.

7.
Int Immunopharmacol ; 141: 112833, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153303

RESUMEN

Mycoplasma pulmonis (M. pulmonis) is an emerging respiratory infection commonly linked to prostate cancer, and it is classified under the group of mycoplasmas. Improved management of mycoplasma infections is essential due to the frequent ineffectiveness of current antibiotic treatments in completely eliminating these pathogens from the host. The objective of this study is to design and construct effective and protective vaccines guided by structural proteomics and machine learning algorithms to provide protection against the M. pulmonis infection. Through a thorough examination of the entire proteome of M. pulmonis, four specific targets Membrane protein P80, Lipoprotein, Uncharacterized protein and GGDEF domain-containing protein have been identified as appropriate for designing a vaccine. The proteins underwent mapping of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) (IFN)-γ ±, and B-cell epitopes using artificial and recurrent neural networks. The design involved the creation of mRNA and peptide-based vaccine, which consisted of 8 CTL epitopes associated by GGS linkers, 7 HTL (IFN-positive) epitopes, and 8 B-cell epitopes joined by GPGPG linkers. The vaccine designed exhibit antigenic behavior, non-allergenic qualities, and exceptional physicochemical attributes. Structural modeling revealed that correct folding is crucial for optimal functioning. The coupling of the MEVC and Toll-like Receptors (TLR)1, TLR2, and TLR6 was examined through molecular docking experiments. This was followed by molecular simulation investigations, which included binding free energy estimations. The results indicated that the dynamics of the interaction were stable, and the binding was strong. In silico cloning and optimization analysis revealed an optimized sequence with a GC content of 49.776 % and a CAI of 0.982. The immunological simulation results showed strong immune responses, with elevated levels of active and plasma B-cells, regulatory T-cells, HTL, and CTL in both IgM+IgG and secondary immune responses. The antigen was completely cleared by the 50th day. This study lays the foundation for creating a potent and secure vaccine candidate to combat the newly identified M. pulmonis infection in people.


Asunto(s)
Vacunas Bacterianas , Epítopos de Linfocito B , Epítopos de Linfocito T , Aprendizaje Automático , Infecciones por Mycoplasma , Proteómica , Vacunas Bacterianas/inmunología , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/inmunología , Proteómica/métodos , Animales , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito B/inmunología , Linfocitos T Citotóxicos/inmunología , Humanos , Proteínas Bacterianas/inmunología , Ratones , Simulación del Acoplamiento Molecular , Mapeo Epitopo/métodos , Antígenos Bacterianos/inmunología
8.
Heliyon ; 9(11): e20767, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920513

RESUMEN

The solvent effects on the photochemical conversion rate of the photosensitizing drug diclofenac (DCF) were investigated using steady-state fluorescence spectroscopy. The spectral information obtained for the photochemical reaction of DCF in a set of neat solvents demonstrates that the photoconversion reaction rate of DCF is not only medium polarity dependent but also hydrogen-bonding dependent. The solvent effects were qualitatively and quantitatively assessed employing various solvatochromic models, including multi-parameter linear regression analysis (MLRA). Interestingly, the MLRA results (R = 0.99) revealed that the photoconversion rate increases with increasing solvent polarizability (π*) and H-bond donor capability (α), whereas the rate decreases with increasing hydrogen-bond acceptor capability (ß). However, predominant effect of the solvent acidity compared to basicity and polarizability was observed. A hypothesis rationalizing the effects of H-bonding and medium polarity on DCF photoconversion reaction is presented and discussed.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123210, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536243

RESUMEN

Extensive research has been conducted on the spectral properties of chromeno[4,3-b]pyridine derivatives, owing to their potential applications in sensing, optoelectronic devices, and drug discovery. This study presents a comprehensive investigation into the fluorosolvatochromism of selected chromeno[4,3-b]pyridine derivatives, with a particular emphasis on the impact of methoxy substitution. Three derivatives were synthesized and subjected to spectral analysis: chromeno[4,3-b]pyridine-3-carboxylate (I) as the parent compound, and its 7-methoxy (II) and 8-methoxy (III) substituted derivatives.The UV-Vis absorption spectra of all derivatives exhibited a broad band with a maximum absorption wavelength that remained unaffected by the surrounding medium. However, distinct fluorescence properties were observed among them. Specifically, derivative II displayed notable fluorescence, while derivatives I and III exhibited no fluorescence properties. Furthermore, derivative II exhibited a fluorescence spectrum that is significantly influenced by the polarity of the medium. To investigate the fluorosolvatochromic behavior in depth, we conducted a comprehensive analysis using various neat solvents with different polarities and hydrogen bonding capabilities. The results obtained revealed a significant positive fluorosolvatochromism, with a bathochromic shift in the fluorescence spectrum as the solvent polarity increased. To understand how specific and non-specific interactions between the solute and the solvent affected the fluorosolvatochromism of II, we employed the four empirical scales model of Catalán. The obtained results demonstrated that intramolecular charge transfer played a crucial role in the fluorescence behavior of II. To provide a molecular-level explanation for the experimental spectral properties, we utilized the DFT and TD-DFT/B3LYP/6-31 + G(d) computational methods with the IEFPCM implicit solvation approach. The spectral differences between II and III were rationalized in terms of the frontier molecular orbitals (FMOs: the HOMO and LUMO), where distinct natures were observed among the examined derivatives. This study offers valuable insights into the impact of methoxy substitution on the physical and chemical properties of chromeno[4,3-b]pyridine derivatives, specifically concerning their spectral properties as elucidated by their fluorosolvatochromic behavior.

10.
Heliyon ; 9(10): e20254, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780763

RESUMEN

A novel bis-phenylurea-based aliphatic amine (BPUA) was prepared via a facile synthetic route, and evaluated as a potential green organic corrosion inhibitor for carbon steel in 1.0 M HCl solutions. NMR spectroscopy experiments confirmed the preparation of the targeted structure. The corrosion inhibitory behavior of the prospective green compound was explored experimentally by electrochemical methods and theoretically by DFT-based quantum chemical calculations. Obtained results revealed an outstanding performance of BPUA, with efficiency of 95.1% at the inhibitor concentration of 50 mg L-1 at 25 °C. The novel compound has improved the steel resistivity and noticeably reduced the corrosion rate from 33 to 1.7 mils per year. Furthermore, the adsorption study elucidates that the mechanism of the corrosion inhibition activity obeys Langmuir isotherm with mixed physisorption/chemisorption modes for BPUA derivatives on the steel surface. Calculated Gibb's free energy of the adsorption process ranges from -35 to -37 kJ mol-1. The SEM morphology analysis validates the electrochemical measurements and substantiates the corrosion-inhibiting properties of BPUA. Additionally, the eco-toxicity assessment on human epithelial MCF-10A cells proved the environmental friendliness of the BPUA derivatives. Density functional theory (DFT) calculations correlated the inhibitor's chemical structure with the corresponding inhibitory behavior. Quantum descriptors disclosed the potentiality of BPUA adsorption onto the surface through the heteroatom-based functional groups and aromatic rings.

12.
Org Biomol Chem ; 7(10): 2182-6, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19421458

RESUMEN

1-Hydroxy-3,5-dimethyl-2,4-benzodioates (4-hydroxyisophthalates) were prepared by [3+3] cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes with 3-ethoxycarbonyl-4-trimethylsilyloxy-3-penten-2-one which is synthesized from (symmetrical) ethyl 2-acetylacetoacetate. The [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 3-alkoxy-2-alkoxycarbonyl-2-en-1-ones, readily available by reaction of beta-ketoesters with trialkyl orthoformiates, provide a convenient and regioselective approach to a great variety of 3-substituted 1-hydroxy-2,4-benzodioates that are not readily available by other methods.


Asunto(s)
Alcoholes/química , Butadienos/química , Catálisis , Compuestos Bicíclicos con Puentes/química , Ciclización , Hidrogenación , Silanos/química , Estereoisomerismo
13.
Tetrahedron Lett ; 50(1): 115-117, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-32287440

RESUMEN

The formal [3+3] cyclization of 1,3-bis(silyloxy)-1,3-butadienes with readily available 2-arylsulfonyl-3-ethoxy-2-en-1-ones resulted in regioselective formation of 4-(arylsulfonyl)phenols.

14.
PeerJ ; 4: e2635, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812430

RESUMEN

BACKGROUND: This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. METHODS: Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS). RESULTS: Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8:PG-1 or 5:3:2 DPPC:POPC:POPG had the greatest in vivo activity in improving arterial oxygenation and dynamic lung compliance in ventilated animals with ARDS. Saline dispersions of these dual-peptide synthetic surfactants were also found to have shear viscosities comparable to or below those of current animal-derived surfactant drugs, supporting their potential ease of deliverability by instillation in future clinical applications. DISCUSSION: Our findings support the potential of dual-peptide synthetic lipid/peptide surfactants containing S-MB DATK + SP-Css ion-lock 1 for treating diseases of surfactant deficiency or dysfunction. Moreover, phospholipase-resistant dual-peptide surfactants containing DEPN-8/PG-1 may have particular applications in treating direct forms of ARDS where endogenous phospholipases are present in the lungs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA