Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Q J Nucl Med Mol Imaging ; 59(1): 95-104, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25737423

RESUMEN

[18F]-3'-fluoro-3'-deoxythymidine (FLT) is a nucleoside-analog imaging agent for quantifying cellular proliferation that was first reported in 1998. It accumulates during the S-phase of the cell cycle through the action of cytosolic thymidine kinase, TK1. Since TK1 is primarily expressed in dividing cells, FLT uptake is essentially limited to dividing cells. Thus FLT is an effective measure of cell proliferation. FLT uptake has been shown to correlate with the more classic proliferation marker, the monoclonal antibody to Ki-67. Increased cellular proliferation is known to correlate with worse outcome in many cancers. However, the Ki-67 binding assay is performed on a sampled preparation, ex vivo, whereas FLT can be quantitatively measured in vivo using positron emission tomography (PET). FLT is an effective and quantitative marker of cell proliferation, and therefore a useful prognostic predictor in the setting of neoplastic disease. This review summarizes clinical studies from 2011 forward that used FLT-PET to assess tumor response to therapy. The paper focuses on our recommendations for a standardized clinical trial protocol and components of a report so multi center studies can be effectively conducted, and different studies can be compared. For example, since FLT is glucuronidated by the liver, and the metabolite is not transported into the cell, the plasma fraction of FLT can be significantly changed by treatment with particular drugs that deplete this enzyme, including some chemotherapy agents and pain medications. Therefore, the plasma level of metabolites should be measured to assure FLT uptake kinetics can be accurately calculated. This is important because the flux constant (KFLT) is a more accurate measure of proliferation and, by inference, a better discriminator of tumor recurrence than standardized uptake value (SUVFLT). This will allow FLT imaging to be a specific and clinically relevant prognostic predictor in the treatment of neoplastic disease.


Asunto(s)
Didesoxinucleósidos/farmacocinética , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Timidina Quinasa/metabolismo , Proliferación Celular , Humanos , Imagen Molecular/métodos , Radiofármacos/farmacocinética
3.
Inorg Chem ; 40(7): 1646-53, 2001 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-11261975

RESUMEN

A series of four structurally related cis-dithiolate-ligated Fe(III) complexes, [Fe(III)(DITpy)2]Cl (1), [Fe(III)(DITIm)2]Cl (2), [Fe(III)(ADIT)2]Cl (3), and [Fe(III)(AMIT)2]Cl (4), are described. The structural characterization of 3 as well as the spectroscopic properties of 3 and 4 has been previously reported. Crystal data for 1, 2, and 4 are as follows: 1.3H2O crystallizes in the orthorhombic space group Pca2(1) with a = 19.800(4) A, b = 18.450(4) A, c = 14.800(3) A, and Z = 8. 2.(1/2)EtOH.1/2H2O crystallizes in the monoclinic space group Cc with a = 24.792(4) A, b = 14.364(3) A, c = 17.527(3) A, beta = 124.91(2) degrees, and Z = 8. 4 crystallizes in the triclinic space group P1 with a = 8.0152(6) A, b = 10.0221(8) A, c = 11.8384(10) A, alpha = 73.460(3) degrees, beta = 71.451(5) degrees, gamma = 72.856(4) degrees, and Z = 2. Complexes 1-4 share a common S2N4 coordination environment that consists of two cis-thiolates, two trans-imines, and two cis-terminal nitrogen donors: Nterm = pyridine (1), imidazole (2), and primary amine (3 and 4). The crystallographically determined mean Fe-S bond distances in 1-4 range from 2.196 to 2.232 A and are characteristic of low-spin Fe(III)-thiolate complexes. The low-spin S = 1/2 ground state was confirmed by both EPR and magnetic susceptibility measurements. The electronic spectra of these complexes are characterized by broad absorption bands centered near approximately 700 nm that are consistent with ligand-to-metal charge-transfer (CT) bands. The complexes were further characterized by cyclic voltammetry measurements, and all possess highly negative Fe(III)/Fe(II) redox couples ( approximately -1 V vs SCE, saturated calomel electrode) indicating that alkyl thiolate donors are effective at stabilizing Fe(III) centers. Both the redox couple and the 700 nm band in the visible spectra show solvent-dependent shifts that are dependent upon the H-bonding ability of the solvent. The implications of these results with respect to the active site of the iron-containing nitrile hydratases are also discussed.


Asunto(s)
Hidroliasas/química , Modelos Moleculares , Sitios de Unión , Cristalografía por Rayos X , Electroquímica , Hidroliasas/metabolismo , Magnetismo , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA