Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38063851

RESUMEN

Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.


Asunto(s)
Síndrome de Cornelia de Lange , Factores de Transcripción , Animales , Ratones , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Síndrome de Cornelia de Lange/genética , Cresta Neural/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Factores de Transcripción/metabolismo
2.
EMBO J ; 39(9): e102808, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32154941

RESUMEN

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Histona Demetilasas/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Histona Demetilasas/metabolismo , Humanos , Ratones , Mutación , Especificidad de Órganos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
3.
Immunity ; 43(4): 703-14, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26431949

RESUMEN

Epigenetic changes, including histone methylation, control T cell differentiation and memory formation, though the enzymes that mediate these processes are not clear. We show that UTX, a histone H3 lysine 27 (H3K27) demethylase, supports T follicular helper (Tfh) cell responses that are essential for B cell antibody generation and the resolution of chronic viral infections. Mice with a T cell-specific UTX deletion had fewer Tfh cells, reduced germinal center responses, lacked virus-specific immunoglobulin G (IgG), and were unable to resolve chronic lymphocytic choriomeningitis virus infections. UTX-deficient T cells showed decreased expression of interleukin-6 receptor-α and other Tfh cell-related genes that were associated with increased H3K27 methylation. Additionally, Turner Syndrome subjects, who are predisposed to chronic ear infections, had reduced UTX expression in immune cells and decreased circulating CD4(+) CXCR5(+) T cell frequency. Thus, we identify a critical link between UTX in T cells and immunity to infection.


Asunto(s)
Histona Demetilasas/deficiencia , Histona Demetilasas/fisiología , Virus de la Coriomeningitis Linfocítica/inmunología , Proteínas Nucleares/deficiencia , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Viremia/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Diferenciación Celular , Femenino , Dosificación de Gen , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Memoria Inmunológica , Subunidad alfa del Receptor de Interleucina-6/biosíntesis , Subunidad alfa del Receptor de Interleucina-6/genética , Cooperación Linfocítica , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Metilación , Ratones , Modelos Inmunológicos , Otitis Media/etiología , Procesamiento Proteico-Postraduccional , Receptores CXCR5/análisis , Especificidad de la Especie , Subgrupos de Linfocitos T/enzimología , Subgrupos de Linfocitos T/virología , Linfocitos T Colaboradores-Inductores/enzimología , Linfocitos T Colaboradores-Inductores/virología , Transcripción Genética , Síndrome de Turner/complicaciones , Síndrome de Turner/enzimología , Virulencia , Inactivación del Cromosoma X
4.
Development ; 147(21)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32541010

RESUMEN

Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.


Asunto(s)
Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Diferenciación Celular , Cara/anomalías , Enfermedades Hematológicas/enzimología , Enfermedades Hematológicas/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Cresta Neural/enzimología , Cresta Neural/patología , Enfermedades Vestibulares/enzimología , Enfermedades Vestibulares/patología , Alelos , Animales , Linaje de la Célula , Movimiento Celular , Condrocitos/patología , Cara/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Mutación/genética , Osteogénesis , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Hueso Paladar/patología , Fenotipo , Cráneo/patología
5.
Proc Natl Acad Sci U S A ; 114(43): E9046-E9055, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073101

RESUMEN

Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled in mice carrying neural crest (NC) deletion of UTX, including craniofacial dysmorphism, cardiac defects, and postnatal growth retardation. Female UTX NC knockout (FKO) demonstrates enhanced phenotypic severity over males (MKOs), due to partial redundancy with UTY, a Y-chromosome demethylase-dead homolog. Thus, NC cells may require demethylase-independent UTX activity. Consistently, Kabuki causative point mutations upstream of the JmjC domain do not disrupt UTX demethylation. We have isolated primary NC cells at a phenocritical postmigratory timepoint in both FKO and MKO mice, and genome-wide expression and histone profiling have revealed UTX molecular function in establishing appropriate chromatin structure to regulate crucial NC stem-cell signaling pathways. However, the majority of UTX regulated genes do not experience aberrations in H3K27me3 or H3K4me3, implicating alternative roles for UTX in transcriptional control. These findings are substantiated through demethylase-dead knockin mutation of UTX, which supports appropriate facial development.


Asunto(s)
Anomalías Múltiples/etiología , Cara/anomalías , Enfermedades Hematológicas/etiología , Histona Demetilasas/metabolismo , Cresta Neural/fisiopatología , Enfermedades Vestibulares/etiología , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histona Demetilasas/genética , Humanos , Lisina/metabolismo , Masculino , Ratones Noqueados , Ratones Transgénicos , Mutación , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Cráneo/embriología
6.
Mol Cell Neurosci ; 87: 4-17, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29254825

RESUMEN

The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF.


Asunto(s)
Histona Demetilasas/genética , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Neuronas/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Expresión Génica/genética , Histonas/metabolismo , Humanos
7.
PLoS Genet ; 10(8): e1004507, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101834

RESUMEN

The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases. We have taken a mouse genetics approach to remove activity of both H3K27 demethylases of the Kdm6 gene family, Utx (Kdm6a, X-linked gene) and Jmjd3 (Kdm6b, autosomal gene). Male embryos null for active H3K27 demethylation by the Kdm6 gene family survive to term. At mid-gestation, embryos demonstrate proper patterning and activation of Hox genes. These male embryos retain the Y-chromosome UTX homolog, UTY, which cannot demethylate H3K27me3 due to mutations in catalytic site of the Jumonji-C domain. Embryonic stem (ES) cells lacking all enzymatic KDM6 demethylation exhibit a typical decrease in global H3K27me3 levels with differentiation. Retinoic acid differentiations of these ES cells demonstrate loss of H3K27me3 and gain of H3K4me3 to Hox promoters and other transcription factors, and induce expression similar to control cells. A small subset of genes exhibit decreased expression associated with reduction of promoter H3K4me3 and some low-level accumulation of H3K27me3. Finally, Utx and Jmjd3 mutant mouse embryonic fibroblasts (MEFs) demonstrate dramatic loss of H3K27me3 from promoters of several Hox genes and transcription factors. Our results indicate that early embryonic H3K27me3 repression can be alleviated in the absence of active demethylation by the Kdm6 gene family.


Asunto(s)
Diferenciación Celular/genética , Desarrollo Embrionario/genética , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Cromatina/genética , Embrión de Mamíferos , Células Madre Embrionarias , Femenino , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/biosíntesis , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Masculino , Ratones , Mutación , Embarazo
8.
PLoS Genet ; 8(9): e1002964, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028370

RESUMEN

UTX (KDM6A) and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27) demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X(Utx-) Y(+) mutant male embryos should phenocopy homozygous X(Utx-) X(Utx-) females. However, X(Utx-) Y(+) mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X(+) Y(Uty-) mutant males are viable. In contrast, compound hemizygous X(Utx-) Y(Uty-) males phenocopy homozygous X(Utx-) X(Utx-) females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas , Proteínas , Animales , Femenino , Hemicigoto , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Homocigoto , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Metilación , Ratones , Antígenos de Histocompatibilidad Menor , Mutación , Proteínas/genética , Proteínas/metabolismo
9.
PLoS Genet ; 7(9): e1002307, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980308

RESUMEN

Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1(Tw)). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1(ΔEx1), is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1(ΔEx1) ears confirm that Zeb1(ΔEx1) is a null allele, whereas Zeb1(Tw) RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1(Tw) expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance.


Asunto(s)
Anomalías Múltiples/genética , Oído Interno/anomalías , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intrones/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Obesidad/genética , Animales , Sitios de Unión/genética , Proteínas Portadoras/genética , Mapeo Cromosómico , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Fenotipo , Mutación Puntual/genética , ARN no Traducido/genética , Proteínas de Unión al ARN , Factores de Transcripción , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
10.
J Neurosci ; 32(34): 11706-15, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915113

RESUMEN

Intraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented. In this study, we first established a novel LPS treatment paradigm where mice were injected intraperitoneally with 1.0 mg/kg LPS for four consecutive days to globally activate CNS microglia. By using a reciprocal bone marrow transplantation procedure between wild-type and Toll-like receptor 4 (TLR4) mutant mice, we demonstrated that the presence of LPS receptor (TLR4) is not required on hematogenous immune cells but is required on cells that are not replaced by bone marrow transplantation, such as vascular endothelia and microglia, to transduce microglial activation and neuroprotection. Furthermore, we showed that activated microglia physically ensheathe cortical projection neurons, which have reduced axosomatic inhibitory synapses from the neuronal perikarya. In line with previous reports that inhibitory synapse reduction protects neurons from degeneration and injury, we show here that neuronal cell death and lesion volumes are significantly reduced in LPS-treated animals following experimental brain injury. Together, our results suggest that activated microglia participate in neuroprotection and that this neuroprotection is likely achieved through reduction of inhibitory axosomatic synapses. The therapeutic significance of these findings rests not only in identifying neuroprotective functions of microglia, but also in establishing the CNS location of TLR4 activation.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lipopolisacáridos/administración & dosificación , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Receptor Toll-Like 4/metabolismo , Animales , Antígenos CD/metabolismo , Apoptosis/efectos de los fármacos , Trasplante de Médula Ósea , Lesiones Encefálicas/patología , Lesiones Encefálicas/cirugía , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Citometría de Flujo , Inmunidad Innata/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Microglía/metabolismo , Microglía/ultraestructura , Microscopía Inmunoelectrónica , Corteza Motora/patología , Corteza Motora/ultraestructura , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura , Receptor Toll-Like 4/deficiencia , Quimera por Trasplante
11.
Curr Opin Cell Biol ; 18(3): 317-24, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16632338

RESUMEN

Cajal bodies (CBs) are nuclear subdomains involved in the biogenesis of several classes of small ribonucleoproteins (RNPs). A number of recent advances highlight progress in the understanding of the organization and dynamics of CB components. For example, a class of small Cajal body-specific (sca) RNPs has been discovered. Localization of scaRNPs to CBs was shown to depend on a conserved RNA motif. Intriguingly, this motif is also present in mammalian telomerase RNA and the evidence suggests that assembly of the active form of telomerase RNP occurs in and around CBs during S phase. Important steps in the assembly and modification of spliceosomal RNPs have also been shown to take place in CBs. Additional experiments have revealed the existence of kinetically distinct subclasses of CB components. Finally, the recent identification of novel markers for CBs in both Drosophila and Arabidopsis not only lays to rest questions about the evolutionary conservation of these nuclear suborganelles, but also should enable forward genetic screens for the identification of new components and pathways involved in their assembly, maintenance and function.


Asunto(s)
Cuerpos Enrollados/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Secuencia Conservada/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Fase S , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Telomerasa/metabolismo
12.
Birth Defects Res ; 115(20): 1885-1898, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800171

RESUMEN

BACKGROUND: Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS: In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION: As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.


Asunto(s)
Discapacidades del Desarrollo , Histonas , Lisina , Niño , Humanos , Cromatina/genética , Discapacidades del Desarrollo/genética , Genómica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Lisina/genética , Anomalías Craneofaciales/genética
13.
J Cell Biol ; 176(6): 831-41, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17353360

RESUMEN

Mutations in human survival motor neurons 1 (SMN1) cause spinal muscular atrophy (SMA) and are associated with defects in assembly of small nuclear ribonucleoproteins (snRNPs) in vitro. However, the etiological link between snRNPs and SMA is unclear. We have developed a Drosophila melanogaster system to model SMA in vivo. Larval-lethal Smn-null mutations show no detectable snRNP reduction, making it unlikely that these animals die from global snRNP deprivation. Hypomorphic mutations in Smn reduce dSMN protein levels in the adult thorax, causing flightlessness and acute muscular atrophy. Mutant flight muscle motoneurons display pronounced axon routing and arborization defects. Moreover, Smn mutant myofibers fail to form thin filaments and phenocopy null mutations in Act88F, which is the flight muscle-specific actin isoform. In wild-type muscles, dSMN colocalizes with sarcomeric actin and forms a complex with alpha-actinin, the thin filament crosslinker. The sarcomeric localization of Smn is conserved in mouse myofibrils. These observations suggest a muscle-specific function for SMN and underline the importance of this tissue in modulating SMA severity.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Modelos Animales de Enfermedad , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas de Unión al ARN/fisiología , Actinina/metabolismo , Actinas/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/análisis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Atrofia Muscular Espinal/genética , Mutación , Miofibrillas/metabolismo , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Fenotipo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Sarcómeros/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora
14.
Cell Rep ; 35(2): 108966, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852868

RESUMEN

Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses.


Asunto(s)
Citotoxicidad Inmunológica/genética , Histona Demetilasas/genética , Memoria Inmunológica/genética , Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Histona Demetilasas/deficiencia , Histona Demetilasas/inmunología , Histonas/genética , Histonas/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal , Linfocitos T Citotóxicos/virología , Carga Viral/genética , Carga Viral/inmunología , Proteína del Gen 3 de Activación de Linfocitos
15.
Dev Cell ; 3(3): 329-37, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12361597

RESUMEN

Cajal bodies (CBs) are nuclear suborganelles involved in biogenesis of small RNAs. Twin structures, called gems, contain high concentrations of the survival motor neurons (SMN) protein complex. CBs and gems often colocalize, and communication between these subdomains is mediated by coilin, the CB marker. Coilin contains symmetrical dimethylarginines that modulate its affinity for SMN, and, thus, localization of SMN complexes to CBs. Inhibition of methylation or mutation of the coilin RG box dramatically decreases binding of coilin to SMN, resulting in gem formation. Coilin is hypomethylated in cells that display gems, but not in those that primarily contain CBs. Likewise, extracts prepared from cells that display gems are less efficient in methylating coilin and Sm constructs in vitro. These results demonstrate that alterations in protein methylation status can affect nuclear organization.


Asunto(s)
Cuerpos Enrollados/metabolismo , Proteínas Nucleares/fisiología , Adenosina/análogos & derivados , Adenosina/farmacología , Secuencia de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/biosíntesis , Arginina/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Metilación , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Péptidos/química , Péptidos/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN , Proteínas del Complejo SMN , Transfección , Células Tumorales Cultivadas
16.
J Cell Biol ; 164(6): 831-42, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15024031

RESUMEN

Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.


Asunto(s)
Cuerpos Enrollados/metabolismo , Animales , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Sustancias Macromoleculares , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Empalme del ARN , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Factores de Tiempo
17.
Cleve Clin J Med ; 75 Suppl 2: S77-82, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18540152

RESUMEN

Preconditioning is a phenomenon in which the brain protects itself against future injury by adapting to low doses of noxious insults. Preconditioning stimuli include ischemia, low doses of endotoxin, hypoxia, hypothermia and hyperthermia, cortical spreading depression, anesthetics, and 3-nitropropionic acid, among others. Understanding of the mechanisms underlying preconditioning has been elusive, but NMDA receptor activation, nitric oxide, inflammatory cytokines, and suppression of the innate immune system appear to have a role. Elucidation of the endogenous cell survival pathways involved in preconditioning has significant clinical implications for preventing neuronal damage in susceptible patients.


Asunto(s)
Isquemia Encefálica/metabolismo , Precondicionamiento Isquémico/métodos , Isquemia Encefálica/prevención & control , Citocinas/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Microglía/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
J Biomol Tech ; 14(1): 9-16, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12901607

RESUMEN

With the advent of high-density DNA marker data sets for the mouse and other model systems, 100 or more genotype are routinely generated from large groups of mice. Issues of the accuracy and reliability of the genotyping are extremely important but often not addressed until genetic analysis is conducted. Simple tests that rely on the robust predictions arising from Mendelian genetics can be made quickly in the molecular laboratory as the data are generated, and require only a spreadsheet program. In this report, genotype data from 392 mice tested at 96 marker sites were analyzed for errors that are typical when handling large volumes of data generated in a repetitive process. The testing consisted of: (1) repeating the genotyping of approximately 1% of the samples; (2) examining the deviation from the expected segregation ratio ( 1:2:1 ) on a marker-by-marker basis; and (3) testing the correlation of the genotype at one marker with that at neighboring genetic markers on a chromosome. These three steps allowed analysis at the level of the microtiter plate, where errors are most likely to occur. A set of 96 dinucleotide repeat markers that are polymorphic between the C57BL/6J and DBA/2J mouse strains and can be multiplexed is reported for use in other genotyping projects.


Asunto(s)
Alelos , Marcadores Genéticos , Genotipo , Algoritmos , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , ADN/genética , Presentación de Datos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
19.
Acta Otolaryngol ; 124(3): 242-8, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15141750

RESUMEN

OBJECTIVE: Mutations in the fibrillar collagen genes COL11A1 and COL11A2 can cause sensorineural hearing loss associated with Stickler syndrome. There is a correlation of hearing loss severity, onset, progression and affected frequencies with the underlying mutated collagen gene. We sought to determine whether differences in spatial or temporal expression of these genes underlie this correlation, and to identify the cochlear cell populations expressing these genes and the structures likely to be affected by mutations. MATERIALS AND METHODS: We used in situ hybridization analysis of C57BL/6J mouse temporal bones. RESULTS: Similar, diffuse expression of Col11a1 and Col11a2 mRNA was first observed in the cochlear duct at embryonic Day 15.5, with increasingly focal hybridization being noted at postnatal Days 1 and 5 in the greater epithelial ridge and lateral wall of the cochlea. The greater epithelial ridge appeared to be the main, if not only, source of mRNA encoding Col11a1 and Col11a2 in the tectorial membrane. At postnatal Day 13, Col11a1 and Col11a2 expression became more focal and co-localized in the inner sulcus, Claudius' cells and cells of Boettcher. CONCLUSIONS: We did not observe spatial or temporal differences in mRNA expression that could account for the auditory phenotype genotype correlation. The expression patterns suggest essential roles for Col11a1 and Col11a2 in the basilar or tectorial membranes.


Asunto(s)
Cóclea/fisiología , Colágeno Tipo XI/genética , Regulación del Desarrollo de la Expresión Génica , Pérdida Auditiva Sensorineural/genética , ARN Mensajero/biosíntesis , Animales , Membrana Basilar/embriología , Membrana Basilar/fisiología , Cóclea/embriología , Colágeno Tipo XI/metabolismo , Matriz Extracelular/fisiología , Genotipo , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Análisis de Regresión , Membrana Tectoria/embriología , Membrana Tectoria/fisiología
20.
Mol Biol Cell ; 20(1): 90-101, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18923150

RESUMEN

The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.


Asunto(s)
Proteína 20 DEAD-Box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Larva/fisiología , Actividad Motora/fisiología , Secuencia de Aminoácidos , Animales , Proteína 20 DEAD-Box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/metabolismo , Humanos , Larva/anatomía & histología , Datos de Secuencia Molecular , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Alineación de Secuencia , Transducción de Señal/fisiología , Transgenes , Proteínas Nucleares snRNP/genética , Proteínas Nucleares snRNP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA