Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31056282

RESUMEN

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Asunto(s)
Forma de la Célula , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Matriz Extracelular/genética , Glicocálix/genética , Caballos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
2.
Proc Natl Acad Sci U S A ; 120(10): e2207461120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848577

RESUMEN

The composition of the plasma membrane (PM) must be tightly controlled despite constant, rapid endocytosis, which requires active, selective recycling of endocytosed membrane components. For many proteins, the mechanisms, pathways, and determinants of this PM recycling remain unknown. We report that association with ordered, lipid-driven membrane microdomains (known as rafts) is sufficient for PM localization of a subset of transmembrane proteins and that abrogation of raft association disrupts their trafficking and leads to degradation in lysosomes. Using orthogonal, genetically encoded probes with tunable raft partitioning, we screened for the trafficking machinery required for efficient recycling of engineered microdomain-associated cargo from endosomes to the PM. Using this screen, we identified the Rab3 family as an important mediator of PM localization of microdomain-associated proteins. Disruption of Rab3 reduced PM localization of raft probes and led to their accumulation in Rab7-positive endosomes, suggesting inefficient recycling. Abrogation of Rab3 function also mislocalized the endogenous raft-associated protein Linker for Activation of T cells (LAT), leading to its intracellular accumulation and reduced T cell activation. These findings reveal a key role for lipid-driven microdomains in endocytic traffic and suggest Rab3 as a mediator of microdomain recycling and PM composition.


Asunto(s)
Endocitosis , Proteínas de la Membrana , Membrana Celular , Movimiento Celular , Lípidos , Proteínas de Unión al GTP rab3/metabolismo
3.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361041

RESUMEN

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
4.
Biophys J ; 123(3): 273-276, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38219739

RESUMEN

Membrane curvature is ubiquitous and essential in cell biology. Curved membranes have several distinct features, including specific protein and lipid sorting, distinct lipid ordering, and changes in transbilayer stress. Curvature also interplays with membrane tension to generate forces that change membrane shape. This research highlight summarizes recent contributions to this topic published in Biophysical Journal.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas , Membrana Dobles de Lípidos/metabolismo , Membranas/metabolismo , Biofisica
5.
Biotechnol Bioeng ; 116(5): 994-1005, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30636317

RESUMEN

Optimization of host-cell production systems with improved yield and production reliability is desired to meet the increasing demand for biologics with complex posttranslational modifications. Aggregation of suspension-adapted mammalian cells remains a significant problem that can limit the cellular density and per volume yield of bioreactors. Here, we propose a genetically encoded technology that directs the synthesis of antiadhesive and protective coatings on the cellular surface. Inspired by the natural ability of mucin glycoproteins to resist cellular adhesion and hydrate and protect cell and tissue surfaces, we genetically encode new cell-surface coatings through the fusion of engineered mucin domains to synthetic transmembrane anchors. Combined with appropriate expression systems, the mucin-coating technology directs the assembly of thick, highly hydrated barriers to strongly mitigate cell aggregation and protect cells in suspension against fluid shear stresses. The coating technology is demonstrated on suspension-adapted human 293-F cells, which resist clumping even in media formulations that otherwise would induce extreme cell aggregation and show improved performance over a commercially available anticlumping agent. The stable biopolymer coatings do not show deleterious effects on cell proliferation rate, efficiency of transient transfection with complementary DNAs, or recombinant protein expression. Overall, our mucin-coating technology and engineered cell lines have the potential to improve the single-cell growth and viability of suspended cells in bioreactors.


Asunto(s)
Reactores Biológicos , Proliferación Celular , Mucinas , Agregación Celular , Recuento de Células , Línea Celular , Humanos , Mucinas/biosíntesis , Mucinas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
6.
Biotechnol Bioeng ; 116(6): 1292-1303, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30684357

RESUMEN

Widespread therapeutic and commercial interest in recombinant mucin technology has emerged due to the unique ability of mucin glycoproteins to hydrate, protect, and lubricate biological surfaces. However, recombinant production of the large, highly repetitive domains that are characteristic of mucins remains a challenge in biomanufacturing likely due, at least in part, to the inherent instability of DNA repeats in the cellular genome. To overcome this challenge, we exploit codon redundancy to encode desired mucin polypeptides with minimal nucleotide repetition. The codon-scrambling strategy was applied to generate synonymous genes, or "synDNAs," for two mucins of commercial interest: lubricin and mucin 1. Stable, long-term recombinant production in suspension-adapted human 293-F cells was demonstrated for the synonymous lubricin complementary DNA (cDNA), which we refer to as SynLubricin. Under optimal conditions, a 293-F subpopulation produced recombinant SynLubricin at more than 200 mg/L of media and was stable throughout 2 months of continuous culture. Functionality tests confirmed that the recombinant lubricin could effectively inhibit cell adhesion and lubricate cartilage explants. Together, our work provides a viable workflow for cDNA design and stable mucin production in mammalian host production systems.


Asunto(s)
Glicoproteínas , Mucinas , Proteínas Recombinantes , Línea Celular , Clonación Molecular , Codón/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Mucinas/química , Mucinas/genética , Mucinas/metabolismo , Ingeniería de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37131599

RESUMEN

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.

8.
Elife ; 122024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837189

RESUMEN

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Microdominios de Membrana , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Microdominios de Membrana/metabolismo , Vías Secretoras , Humanos , Cinética , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Células HeLa
9.
Sci Adv ; 6(15): eaay0076, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32300645

RESUMEN

Silicones are commonly used for lubrication of syringes, encapsulation of medical devices, and fabrication of surgical implants. While silicones are generally viewed as relatively inert to the cellular milieu, they can mediate a variety of inflammatory responses and other deleterious effects, but the mechanisms underlying the bioactivity of silicones remain unresolved. Here, we report that silicone liquids and gels have high surface stresses that can strongly resist deformation at cellular length scales. Biomedical silicones, including syringe lubricants and fillings from FDA-approved breast implants, readily adsorb matrix proteins and activate canonical rigidity sensing pathways through their surface stresses. In 3D culture models, liquid silicone droplets support robust cellular adhesion and the formation of multinucleated monocyte-derived cell masses that recapitulate phenotypic aspects of granuloma formation in the foreign body response. Together, our findings implicate surface stress as a cellular stimulant that should be considered in application of silicones for biomedical purposes.


Asunto(s)
Materiales Biocompatibles , Fenómenos Fisiológicos Celulares , Siliconas , Materiales Biocompatibles/química , Biomimética , Implantes de Mama , Geles , Humanos , Ligandos , Lubrificación , Transducción de Señal , Siliconas/química , Tensión Superficial
10.
ACS Biomater Sci Eng ; 4(2): 388-399, 2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29805991

RESUMEN

The glycocalyx is a coating of protein and sugar on the surface of all living cells. Dramatic perturbations to the composition and structure of the glycocalyx are frequently observed in aggressive cancers. However, tools to experimentally mimic and model the cancer-specific glycocalyx remain limited. Here, we develop a genetically encoded toolkit to engineer the chemical and physical structure of the cellular glycocalyx. By manipulating the glycocalyx structure, we are able to switch the adhesive state of cells from strongly adherent to fully detached. Surprisingly, we find that a thick and dense glycocalyx with high O-glycan content promotes cell survival even in a suspended state, characteristic of circulating tumor cells during metastatic dissemination. Our data suggest that glycocalyx-mediated survival is largely independent of receptor tyrosine kinase and mitogen activated kinase signaling. While anchorage is still required for proliferation, we find that cells with a thick glycocalyx can dynamically attach to a matrix scaffold, undergo cellular division, and quickly disassociate again into a suspended state. Together, our technology provides a needed toolkit for engineering the glycocalyx in glycobiology and cancer research.

11.
Stem Cell Res Ther ; 8(1): 243, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29096716

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of ß-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs) express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility. METHODS: Equine galectin-1 and -3 gene expression was quantified using qRT-PCR in cultured BMSCs, synoviocytes and articular chondrocytes, in addition to synovial membrane and articular cartilage tissues. Galectin gene expression, protein expression, and protein secretion were measured in equine BMSCs following exposure to inflammatory cytokines (IL-1ß 5 and 10 ng/mL, TNF-α 25 and 50 ng/mL, or LPS 0.1, 1, 10 and 50 µg/mL). BMSC focal adhesion formation was assessed using confocal microscopy, and BMSC motility was quantified in the presence of inflammatory cytokines (IL-1ß or TNF-α) and the pan-galectin inhibitor ß-lactose (100 and 200 mM). RESULTS: Equine BMSCs expressed 3-fold higher galectin-1 mRNA levels as compared to cultured synovial fibroblasts (p = 0.0005) and 30-fold higher galectin-1 (p < 0.0001) relative to cultured chondrocytes. BMSC galectin-1 mRNA expression was significantly increased as compared to carpal synovial membrane and articular cartilage tissues (p < 0.0001). IL-1ß and TNF-α treatments decreased BMSC galectin gene expression and impaired BMSC motility in dose-dependent fashion but did not alter galectin protein expression. ß-lactose abrogated BMSC focal adhesion formation and inhibited BMSC motility. CONCLUSIONS: Equine BMSCs constitutively express high levels of galectin-1 mRNA relative to other articular cell types, suggesting a possible mechanism for their intra-articular immunomodulatory properties. BMSC galectin expression and motility are impaired in an inflammatory environment, which may limit tissue repair properties following intra-articular administration. ß-lactose-mediated galectin inhibition also impaired BMSC adhesion and motility. Further investigation into the effects of joint inflammation on BMSC function and the potential therapeutic effects of BMSC galectin expression in OA is warranted.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Galectina 1/genética , Galectina 3/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Cartílago Articular/citología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/inmunología , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/inmunología , Femenino , Fibroblastos/citología , Fibroblastos/inmunología , Galectina 1/antagonistas & inhibidores , Galectina 1/inmunología , Galectina 3/antagonistas & inhibidores , Galectina 3/inmunología , Expresión Génica , Caballos , Inflamación , Interleucina-1beta/farmacología , Lactosa/farmacología , Lipopolisacáridos/farmacología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Especificidad de Órganos , Cultivo Primario de Células , Líquido Sinovial/citología , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/inmunología , Membrana Sinovial/citología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/inmunología , Factor de Necrosis Tumoral alfa/farmacología
12.
Sci Rep ; 6: 25463, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27157803

RESUMEN

Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal ß-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.


Asunto(s)
Cartílago Articular/metabolismo , Galectina 3/metabolismo , Glicoproteínas/metabolismo , Lubrificación , Animales , Bovinos , Glicómica , Caballos , Humanos , Cinética , Fenotipo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA