RESUMEN
The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3â³)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Escherichia coli , Sus scrofa , Animales , Italia , Sus scrofa/microbiología , Porcinos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Antibacterianos/farmacología , Escherichia/genética , Escherichia/aislamiento & purificación , Escherichia/efectos de los fármacos , Escherichia/patogenicidad , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Secuenciación Completa del GenomaRESUMEN
Listeria monocytogenes contamination that occurs during and post-processing of dairy products is a serious concern for consumers, and bioprotective cultures can be applied to control the growth of the pathogen in sheep milk cheeses. However, to respect specifications provided for protected designation of origin (PDO) cheeses, only autochthonous microorganisms can be used as bioprotective cultures in these products. This in vitro study aimed to evaluate thermophilic lactic acid bacteria (LAB) isolated from sheep milk as bio-preservative agents to control L. monocytogenes growth in PDO cheese. Results were compared with those obtained with a commercial protective culture (cPC) composed of a Lactiplantibacillus plantarum bacteriocin producer designed to inhibit L. monocytogenes growth in cheese. The in vitro antilisterial activities of n.74 autochthonous LAB and a cPC were tested against 51 L. monocytogenes strains using an agar well diffusion assay. In addition, 16S rRNA sequencing of LAB isolates with antilisterial activity was conducted and strains of Lactobacillus helveticus, Lactobacillus delbrueckii subsp. indicus, Lactobacillus delbrueckii subsp. sunkii, Lactobacillus delbrueckii subsp. lactis and Enterococcus faecalis were identified. In this study, 33.6% (74/220) bacterial strains isolated from milk had characteristics compatible with thermophilic LAB, of which 17.6% (13/74) had in vitro antilisterial activity. These results demonstrate that raw sheep milk can be considered an important source of autochthonous thermophilic LAB that can be employed as protective cultures during the manufacturing of Sardinian PDO cheeses to improve their food safety. The use of bioprotective cultures should be seen as an additional procedure useful to improve cheese safety along with the correct application of good hygienic practices during manufacturing and the post-processing stages.
RESUMEN
The main objective of this study was to innovate soft and semi-cooked sheep milk cheese production processes with the use of a commercial protective culture able to control Listeria monocytogenes growth. A freeze-dried commercial culture of Lactobacillus plantarum was tested in DS cheese and PS cheese, two types of pasteurized sheep milk, raw-paste cheeses aged for no less than 20 and 30 days respectively. In the first step, in vitro tests were conducted to identify the most suitable matrix for the growth of L. plantarum in order to create a subculture that could be used at industrial cheese-making plants. During the second phase of the study, L. plantarum culture was introduced in the manufacturing process of the cheeses in a production plant. Finally, a challenge test was conducted on portioned DS and PS cheeses in order to evaluate the activity of the protective culture against L. monocytogenes: the cheeses were portioned, experimentally contaminated with L. monocytogenes strains, vacuum packed and stored at +4°C (correct storage conditions) and at +10°C (thermal abuse). Cheeses were analysed at the end of the shelf-life to evaluate the presence and growth of L. monocytogenes, to enumerate lactic acid bacteria and determine chemicalphysical features. The results confirmed that protective cultures are a useful technological innovation to control L. monocytogenes growth during cheese storage without altering composition, microflora and chemical- physical characteristics of the product. However, the use of protective cultures should be applied as an integration of risk control measures and not as a substitute for preventive actions.
RESUMEN
The composition and physicochemical characteristics of short-aged Pecorino Sardo PDO (Protected Designation of Origin) cheese makes it permissive to Listeria monocytogenes growth. The PDO product specification stipulates that this cheese is produced with whole sheep's milk inoculated with cultures from the area of origin. Therefore, the use of bioprotective cultures for the inhibition of pathogens in PDO cheeses is allowed only if autochthonous microorganisms are used. Furthermore, bioprotective cultures are generally used on the cheese surface to prevent the outgrowth of L. monocytogenes, the application of which can be time-consuming and require specialist technical knowledge. In this study, we examine the direct addition of bioprotective cultures to the cheese vat and compare the activity of a commercial bioprotective culture (Lactiplantibacillus plantarum) and an autochthonous lactic acid bacterium with bioprotective properties (Lactobacillus delbruekii sups. sunkii), for the inhibition of L. monocytogenes in Pecorino Sardo PDO cheese. Three types of Pecorino Sardo PDO cheese were made with bioprotective cultures added directly to the cheese milk along with the starter inoculum: PSA, with the commercial bioprotective culture; PSB, with the autochthonous bioprotective culture; and a CTRL cheese with no bioprotective culture. A challenge test was performed on each of these cheeses by artificially contaminating the cheese surface with L. monocytogenes (2 Log10 CFU/g). Three batches of each cheese type were analyzed to enumerate mesophilic and thermophilic lactic acid bacteria and to investigate the growth potential of L. monocytogenes during manufacturing, at the end of ripening, at the end of shelf-life, and after 180 days from cheese production. Both bioprotective cultures tested in this study showed inhibitory action against the pathogen with 0.3-1.8 Log10 CFU/g (colony-forming unit per gram) reduction levels. The autochthonous organism, L. sunkii, was as effective as the commercially supplied culture, and the addition of the bioprotective cultures to the cheese-making procedure offered protection against L. monocytogenes. The direct addition of bioprotective cultures to the making procedure of Pecorino Sardo PDO cheese is a potentially innovative strategy to improve the safety of this product.
RESUMEN
This study aimed to evaluate the influence of dry and wet aging on microbial profile and physicochemical characteristics of bovine loins obtained from four animals of two different breeds, namely two Friesian cull cows and two Sardo-Bruna bovines. During dry and wet aging aerobic colony count, Enterobacteriaceae, mesophilic lactic acid bacteria, Pseudomonas, molds and yeasts, Salmonella enterica, Listeria monocytogenes and Yersinia enterocolitica, pH and water activity (aw) were determined in meat samples collected from the internal part of the loins. Moreover, the microbial profile was determined with sponge samples taken from the surface of the meat cuts. Samples obtained from Friesian cows were analyzed starting from the first day of the aging period and after 7, 14, and 21 days. Samples obtained from the Sardo Bruna bovines were also analyzed after 28 and 35 days. Wet aging allowed better control of Pseudomonas spp. during storage that showed statistically lower levels (P>0.05) in wet-aged meats with respect to dry-aged meats during aging and particularly at the end of the period (P>0.01) in both cattle breeds. At the end of the experiment (21 days), aerobic colony count and Pseudomonas in Fresian cows' dry-aged meats showed mean levels >8 log, while lactic acid bacteria mean counts >7 log were detected in wet-aged meats of both cattle breeds. In meats submitted to dry aging, pH was significantly higher (P<0.01) with respect to wet-aged meats at all analysis times and in both cattle breeds. Aw showed a stable trend during both dry and wet aging without significant differences. These preliminary results highlight the critical importance of the strict application of good hygiene practices during all stages of production of these particular cuts of meat intended for aging.
RESUMEN
Salsiccia sarda or Sardinian fermented sausage is a traditional dry-fermented sausage included in the list of traditional food products of Sardinia (Italy). At the request of some producing plants, the possibility of extending the shelf life of the vacuum-packed product up to 120 days was evaluated. Manufacturing of 90 samples, representing 3 different batches of Sardinian fermented sausage was carried out in two producing plants (A and B). In the packaged product and subsequently every 30 days for four months (T0, T30, T60, T120), the following analyses were conducted on all samples: physicochemical characteristics, total aerobic mesophilic count, Enterobacteriaceae count, detection of Listeria monocytogenes, Salmonella spp., mesophilic lactic acid bacteria, and coagulase-positive Staphylococci. Moreover, surfaces in contact and surfaces not in contact with food were sampled in both producing plants. Sensory profile analysis was also performed for every analysis time. At the end of the extended shelf life, pH values were equal to 5.90±0.11 (producing plant A) and 5.61±0.29 (producing plant B). Water activity mean values at T120 were 0.894±0.02 (producing plant A) and 0.875±0.01 (producing plant B). L. monocytogenes was detected in 73.3% (33/45) of the samples from producing plant A, with mean levels of 1.12±0.76 log10 CFU/g. In producing plant B, L. monocytogenes was never detected. Enterobacteriaceae were detected in 91.1% (41/45) of samples in producing plant A with mean values of 3.15±1.21 log10 CFU/g, and in 35.5% (16/45) samples in producing plant B samples with mean values of 0.72±0.86 log10 CFU/g. Salmonella and Staphylococcus aureus were never detected. Regarding environmental samples, the sites that were most contaminated by L. monocytogenes were the bagging table (contact surface) and processing room floor drains (non-contact surface) with a prevalence of 50% each (8/16 positive samples for both sampling sites). Sensory analysis results showed that at T30 the overall sensory quality was at its highest;moreover, the visual-tactile aspect, the olfactory characteristics, the gustatory aspects, and the texture showed significant differences in samples throughout the shelf life, with a decreased intensity at 120 days of storage. Overall, the quality and sensory acceptance of the vacuumpacked Sardinian fermented sausage was not affected until 120 days of shelf-life. However, the possible contamination by L. monocytogenes calls attention to the hygienic management of the entire technological process. The environmental sampling was confirmed as a useful verification tool during control.
RESUMEN
Between 2018 and 2019, 309 environmental and food samples were collected from two industrial cheese-making plants located in Sardinia, in order to investigate Y. enterocolitica presence and to characterize the isolates. Y. enterocolitica isolates were further compared with isolates detected during a previous investigation from sheep and goat raw milk samples. Y. enterocolitica was detected in 7.4 % of the samples and the prevalence was higher, even if not significantly (P > 0.05) higher in non-food contact surface samples (10.2 %) than in food contact surface samples (3.8 %). The highest prevalence was detected in floor samples (13.5 %), followed by drain samples (7.2 %), which might serve as main harborage sites for further contamination. Y. enterocolitica was also detected in food contact surfaces, namely shelves of the Ricotta cooling room and packaging room, one cheese cutting machine surface and one raw milk filter sample. The biotype 1A isolates identified in this study were classified into six different serotypes. Additionally, a bioserotype 2/O:5,27 isolate was identified in one goat milk sample. All 1A isolates possessed the virulence genes invA and ystB while the 2/O:5,27 isolate showed the presence of ail, ystA, invA and yadA genes, thus confirming a pathogenic potential. The isolates showed intrinsic resistance to amoxicillin-clavulanic acid, ticarcillin and cefoxitin due to the presence of the blaA gene. Whole genome sequencing allowed to identify seven different sequence types among the 1A isolates, thus showing a high genetic diversity. The same Y. enterocolitica sequence type (ST3) was detected from three different areas of the same cheese-making plant, indicating a possible transfer of the microorganism along the processing lines. Y. enterocolitica contamination in cheese-making plants can pose a risk to human health. Preventive measures include the hygienic design of the plant layout and equipment, in association with proper cleaning and disinfection programmes.
Asunto(s)
Queso , Yersiniosis , Yersinia enterocolitica , Humanos , Animales , Ovinos , Antibacterianos/farmacología , Virulencia/genética , Farmacorresistencia Bacteriana/genética , Cabras , Yersiniosis/epidemiologíaRESUMEN
The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards ß-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.
RESUMEN
Sardinian fermented sausage "Salsiccia Sarda" is a Mediterranean-style, semi-dry, fermented, RTE product, representing the main pork meat product in Sardinia (Italy). The high variability that characterizes the technological processes applied in different production plants results in sausages with different chemico-physical features sometimes permissive for the growth of Listeria monocytogenes. In order to guarantee the hygienic-sanitary quality of the final product and to innovate the manufacturing process, the main objective of this study was to evaluate the use of different commercial protective cultures to control L. monocytogenes growth in the Sardinian fermented sausage. In the first step, in vitro tests were carried out to evaluate the effectiveness of five freeze-dried bioprotective cultures availabe on the market in limiting the growth of L. monocytogenes. The two protective cultures that showed the best in vitro results were selected for a challenge test on artificially contaminated Sardinian fermented sausages. Moreover, the protective culture that showed the best results in inhibiting the growth of L. monocytogenes according to in vitro and challenge test experiments, was included into real production settings and validated in three producing plants. As a result, it was observed that protective cultures represent an important technological innovation for the Sardinian fermented sausage processing plants as they allow to control L. monocytogenes growth without altering the composition, the microflora and the chemical-physical characteristics of the product, thus ensuring safety and quality. Protective cultures also showed to reduce Enterobacteriaceae mean levels at the end of ripening and not to affect the natural concentration of lactic acid bacteria and coagulase-negative staphylococci.
RESUMEN
The aim of this study was to evaluate Salmonella prevalence and serotypes in four Sardinian pig slaughterhouses. Moreover, a population study was conducted with pulsed field gel electrophoresis (PFGE). The results were compared with previous investigations carried out during years 2008 and 2014. A total of 147 samples were collected, 117 from slaughtered pigs (lymph nodes, colon content and carcass surface) and 30 from the slaughterhouse environment (surfaces in contact and not in contact with meat). Salmonella was isolated from 3.4% pig samples and was not detected from environmental samples. Comparing the results with those of previous investigations, occurrence showed a sharp decrease through the years in both animals (18.8% in 2008, 10% in 2014 and 3.4% in 2020) and environmental samples (34.1% in 2008, 3.7 in 2014, and 0% in 2020). At the same time, prevalence of carriers (pigs positive at lymph nodes and/or colon content level) showed a reduction through the years and was always lower in animals coming from local farms rather than those coming from other European Member States, probably indicating the role of stressful factors as transport in increasing Salmonella susceptibility and shedding. Salmonella serotypes were monophasic Typhimurium, Rissen and Muenchen. Overall, 13 different Salmonella serotypes were identified during the three surveys with the most prevalent being serotypes often isolated from slaughtered pigs and during human salmonellosis cases: S. Derby and S. Typhimurium in 2008, S. Anatum and S. Rissen in 2014, monophasic S. Typhimurium in 2020. Population study with pulsed field gel electrophoresis showed a high similarity between Salmonella strains belonging to the same serotype. The results of the investigations showed a decrease of Salmonella occurrence during twelve years in Sardinia, probably due to the improvement in the application of correct GMPs and GHPs at slaughterhouse and also to a reduction of the rate of carrier pigs at farm level.
RESUMEN
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
RESUMEN
Fiore Sardo is a Protected Designation of Origin (PDO) cheese produced in Sardinia (Italy) from raw sheep's milk, presenting risk factors due to an accumulation of Biogenic Amines (BA). A total of 37 Fiore Sardo cheese samples produced in 19 dairy farms were collected from local retail stores to evaluate BA content and its relationship with free amino acids (FAA) and composition. The following were determined for each sample: pH, water activity, composition (moisture, dry matter, NaCl, protein and fat content). FAA and BA, after extraction, were determined by HPLC-FL. The total BA content in Fiore Sardo PDO cheese samples was 127±87 mg 100 g-1, ranging between 6 and 366 mg 100 g-1. Tyramine showed the highest concentration (82±51 mg 100 g-1), followed by putrescine (21±26 mg 100 g-1). Moreover, cadaverine, histamine, ß-phenylethylamine and tryptamine were detected at concentrations lower than 10 mg 100 g-1. Overall 54% of the samples analysed exceeded the threshold of 90 mg 100 g-1 for total BA content, posing a potential risk for consumers. BA, total FAA (2233±764 mg 100 g-1) and pH were positively correlated (P≤0.01) between themselves, whereas BA content was not correlated with aw, humidity and percentage of NaCl. The hierarchical cluster analysis results, considering 37 samples and 6 variables, detected four different groups. Samples with BA ≥200 mg 100 g-1 were distributed in two groups characterized by a higher proteolysis indicator levels (FAA, pH) but significantly different for aw, humidity and NaCl concentration. The results showed that high levels of BA were detectable in some samples of Fiore Sardo PDO cheese, suggesting that effective technological conditions at production should be adopted.
RESUMEN
Given probable the increment in the nutritional needs of both humans and animals, animal production will have increased dramatically by 2050. Insect meals could be an alternative protein source for livestock, and they would also be able to reduce the environmental problems related to intensive animal production system. The aim of this study was to evaluate productive performance, blood analysis, nutrient digestibility, and changes in the internal organs of laying hens fed Hermetia illucens larvae meal (HI) at two different levels in substitution (25 or 50%) of soybean meal (SBM). A total of 162 Hy-line Brown hens (sixteen weeks old) were equally divided into three experimental groups and fed isoprotein and isoenergetic diets. Egg weight, feed intake, and feed conversion rate were not affected by the soybean meal substitution at both inclusion levels of insect meal. Egg mass was positively affected by the insect meal diets, as was the lay percentage, although only at the lowest inclusion level. Dry matter, organic matter, and crude protein digestibility coefficients were lower for the HI50 diet, probably due to the negative effect of chitin. A reduction in serum cholesterol and triglycerides was observed in both insect-meal fed groups, while serum globulin level increased only at the highest level of insect meal inclusion, and, consequently, the albumin to globulin ratio decreased. Overall, a protein replacement of 25% with an insect meal from Hermetia illucens larvae in the diet of laying hens seems to be more suitable and closer to the optimal level.