RESUMEN
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed 'deep', since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, 'proximal' SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Asunto(s)
Agonistas de Receptores de Cannabinoides , Neuritas , Proyección Neuronal , Proteómica , Receptor Cannabinoide CB1 , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos , Transducción de Señal , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , HumanosRESUMEN
COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.
Asunto(s)
COVID-19/inmunología , Células Madre Pluripotentes Inducidas , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Miocitos Cardíacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virologíaRESUMEN
Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs. We hypothesized that dystrophic bulb formation is due to quantitative imbalances between SCPs. Simulations predict redundancies between lower level sibling SCPs within each type of high level SCP. In contrast, higher level SCPs, such as vesicle transport and exocytosis or microtubule growth characteristic of each type need to be strictly coordinated with each other and imbalances result in stalling of neurite outgrowth. From these simulations, we predicted the effect of changing the activities of SCPs involved in vesicle exocytosis or microtubule growth could lead to formation of dystrophic bulbs. siRNA ablation experiments verified these predictions. We conclude that whole cell dynamics requires balance between the higher-level SCPs involved and imbalances can terminate whole cell responses such as neurite outgrowth.
Asunto(s)
Transporte Biológico/fisiología , Microtúbulos/metabolismo , Proyección Neuronal/fisiología , Animales , Fenómenos Fisiológicos Celulares , Células Cultivadas , Exocitosis , Microtúbulos/fisiología , Modelos Neurológicos , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/fisiología , Unión Proteica , RatasRESUMEN
Inhibitory molecules associated with CNS myelin, such as myelin-associated glycoprotein (MAG), represent major obstacles to axonal regeneration following CNS injury. Our laboratory has shown that elevating levels of intracellular cAMP, via application of the nonhydrolyzable analog dibutyryl cAMP (dbcAMP), can block the inhibitory effects of MAG and myelin. We have also shown that elevation of cAMP results in upregulation of arginase I and increased polyamine synthesis. Treatment with putrescine or spermidine blocks myelin-mediated inhibition of neurite outgrowth, but the mechanism underlying this effect has not yet been elucidated. Here we show that cyclin-dependent kinase 5 (Cdk5) is required for dbcAMP and putrescine to overcome MAG-mediated inhibition. The ability of dbcAMP and putrescine to overcome inhibition by MAG is abolished in the presence of roscovitine, a Cdk inhibitor that has greater selectivity for Cdk5, and expression of dominant negative Cdk5 abolishes the ability of dbcAMP or putrescine to enhance neurite outgrowth in the presence of MAG. Importantly, dbcAMP and putrescine increase expression of p35, the neuron-specific activator of Cdk5, and rat DRG neurons transduced with HSV overexpressing p35 can overcome inhibition by MAG. The upregulation of p35 by putrescine is also reflected in increased localization of p35 to neurites and growth cones. Last, we show that putrescine upregulates p35 expression by serving as a substrate for hypusine modification of eIF5A, and that this hypusination is necessary for putrescine's ability to overcome inhibition by MAG. Our findings reveal a previously unknown mechanism by which polyamines may encourage regeneration after CNS injury.
Asunto(s)
AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Poliaminas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/citología , Bucladesina/farmacología , Células CHO , Células Cultivadas , Cricetulus , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Poliaminas/farmacología , Ratas , Ratas Long-Evans , Regulación hacia Arriba/genéticaRESUMEN
The adult CNS does not spontaneously regenerate after injury, due in large part to myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo-A, and oligodendrocyte-myelin glycoprotein. All three inhibitors can interact with either the Nogo receptor complex or paired immunoglobulin-like receptor B. A conditioning lesion of the sciatic nerve allows the central processes of dorsal root ganglion (DRG) neurons to spontaneously regenerate in vivo after a dorsal column lesion. After a conditioning lesion, DRG neurons are no longer inhibited by myelin, and this effect is cyclic AMP (cAMP)- and transcription-dependent. Using a microarray analysis, we identified several genes that are up-regulated both in adult DRGs after a conditioning lesion and in DRG neurons treated with cAMP analogues. One gene that was up-regulated under both conditions is metallothionein (MT)-I. We show here that treatment with two closely related isoforms of MT (MT-I/II) can overcome the inhibitory effects of both myelin and MAG for cortical, hippocampal, and DRG neurons. Intrathecal delivery of MT-I/II to adult DRGs also promotes neurite outgrowth in the presence of MAG. Adult DRGs from MT-I/II-deficient mice extend significantly shorter processes on MAG compared with wild-type DRG neurons, and regeneration of dorsal column axons does not occur after a conditioning lesion in MT-I/II-deficient mice. Furthermore, a single intravitreal injection of MT-I/II after optic nerve crush promotes axonal regeneration. Mechanistically, MT-I/II ability to overcome MAG-mediated inhibition is transcription-dependent, and MT-I/II can block the proteolytic activity of α-secretase and the activation of PKC and Rho in response to soluble MAG.
Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Metalotioneína/metabolismo , Regeneración Nerviosa , Animales , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiopatología , Femenino , Masculino , Metalotioneína/genética , Ratones Noqueados , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Ratas , Ratas Long-EvansRESUMEN
After CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP (cAMP), as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cAMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury.
Asunto(s)
Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Proteína Smad2/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , Femenino , Expresión Génica/fisiología , Inyecciones Espinales , Masculino , Proteínas de la Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/fisiopatología , ARN Interferente Pequeño/genética , Ratas , Ratas Endogámicas F344 , Ratas Long-Evans , Células Ganglionares de la Retina/fisiología , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína Smad2/genética , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.
Asunto(s)
Cardiotoxicidad , Perfilación de la Expresión Génica , Miocitos Cardíacos , Inhibidores de Proteínas Quinasas , Transcriptoma , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/toxicidad , Perfilación de la Expresión Génica/métodos , Cardiotoxicidad/genética , Cardiotoxicidad/etiología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Línea Celular , Análisis de la Célula Individual/métodos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismoRESUMEN
Apolipoprotein E epsilon 4 (ApoE4) is the second most common variant of ApoE, being present in â¼14% of the population. Clinical reports identify ApoE4 as a genetic risk factor for poor outcomes after traumatic spinal cord injury (SCI) and spinal cord diseases such as cervical myelopathy. To date, there is no intervention to promote recovery of function after SCI/spinal cord diseases that is specifically targeted at ApoE4-associated impairment. Studies in the human and mouse brain link ApoE4 to elevated levels of synaptojanin 1 (synj1), a lipid phosphatase that degrades phosphoinositol 4,5-bisphosphate (PIP2) into inositol 4-monophosphate. Synj1 regulates rearrangements of the cytoskeleton as well as endocytosis and trafficking of synaptic vesicles. We report here that, as compared to ApoE3 mice, levels of synj1 messenger RNA and protein were elevated in spinal cords of healthy ApoE4 mice associated with lower PIP2 levels. Using a moderate-severity model of contusion SCI in mice, we found that genetic reduction of synj1 improved locomotor function recovery at 14 days after SCI in ApoE4 mice without altering spared white matter. Genetic reduction of synj1 did not alter locomotor recovery of ApoE3 mice after SCI. Bulk RNA sequencing revealed that at 14 days after SCI in ApoE4 mice, genetic reduction of synj1 upregulated genes involved in glutaminergic synaptic transmission just above and below the lesion. Overall, our findings provide evidence for a link between synj1 to poor outcomes after SCI in ApoE4 mice, up to 14 days post-injury, through mechanisms that may involve the function of excitatory glutaminergic neurons.
RESUMEN
Membrane channels such as those formed by connexins (Cx) and P2X7 receptors (P2X7R) are permeable to calcium ions and other small molecules such as adenosine triphosphate (ATP) and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx and Panx1 hemichannels (HCs). To test if boldine could improve function after SCI, boldine or vehicle was administered to treat mice with a moderate severity contusion-induced SCI. Boldine led to greater spared white matter and increased locomotor function as determined by the Basso Mouse Scale and horizontal ladder rung walk tests. Boldine treatment reduced immunostaining for markers of activated microglia (Iba1) and astrocytic (GFAP) markers while increasing that for axon growth and neuroplasticity (GAP-43). Cell culture studies demonstrated that boldine blocked glial HC, specifically Cx26 and Cx30, in cultured astrocytes and blocked calcium entry through activated P2X7R. RT-qPCR studies showed that boldine treatment reduced expression of the chemokine Ccl2, cytokine IL-6 and microglial gene CD68, while increasing expression of the neurotransmission genes Snap25 and Grin2b, and Gap-43. Bulk RNA sequencing revealed that boldine modulated a large number of genes involved in neurotransmission in spinal cord tissue just caudal from the lesion epicenter at 14 days after SCI. Numbers of genes regulated by boldine was much lower at 28 days after injury. These results indicate that boldine treatment ameliorates injury and spares tissue to increase locomotor function.
RESUMEN
Membrane channels such as connexins (Cx), pannexins (Panx) and P2X 7 receptors (P2X 7 R) are permeable to calcium ions and other small molecules such as ATP and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx hemichannels (HC) and Panx. To test if boldine could improve function after SCI, boldine or vehicle was administered to treat mice with a moderate severity contusion-induced SCI. Boldine led to greater spared white matter and increased locomotor function as determined by the Basso Mouse Scale and horizontal ladder rung walk tests. Boldine treatment reduced immunostaining for markers of activated microglia (Iba1) and astrocytic (GFAP) markers while increasing that for axon growth and neuroplasticity (GAP-43). Cell culture studies demonstrated that boldine blocked glial HC, specifically Cx26 and Cx30, in cultured astrocytes and blocked calcium entry through activated P2X 7 R. RT-qPCR studies showed that boldine treatment reduced expression of the chemokine Ccl2, cytokine IL-6 and microglial gene CD68, while increasing expression of the neurotransmission genes Snap25 and Grin2b, and Gap-43. Bulk RNA sequencing (of the spinal cord revealed that boldine modulated a large number of genes involved in neurotransmission in in spinal cord tissue just below the lesion epicenter at 14 days after SCI. Numbers of genes regulated by boldine was much lower at 28 days after injury. These results indicate that boldine treatment ameliorates injury and spares tissue to increase locomotor function.
RESUMEN
Spinal cord injury (SCI) results in severe atrophy of skeletal muscle in paralyzed regions, and a decrease in the force generated by muscle per unit of cross-sectional area. Oxidation of skeletal muscle ryanodine 1 receptors (RyR1) reduces contractile force due to reduced binding of calstabin 1 to RyR1 together with altered gating of RyR1. One cause of RyR1 oxidation is NADPH oxidase 4 (Nox4). We have previously shown that in rats, RyR1 was oxidized and bound less calstabin 1 at 56 days after spinal cord injury (SCI) by transection. Here, we used a conditional knock-out mouse model of Nox4 in muscle to investigate the role of Nox4 in reduced muscle specific force after SCI. Peak twitch force in control mice after SCI was reduced by 42% compared to sham-operated controls but was increased by approximately 43% in SCI Nox4 conditional KO mice compared to SCI controls although it remained less than that for sham-operated controls. Unlike what observed in rats, after SCI the expression of Nox4 was not increased in gastrocnemius muscle and binding of calstabin 1 to RyR1 was not reduced in this muscle. The results suggest a link between Nox4 expression in muscle tissue and reduction in muscle twitch force, however further studies are needed to understand the mechanistic basis for this linkage.
RESUMEN
Introduction: Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods: We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results: The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion: By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.
RESUMEN
There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth. We applied, in gel foam at the site of nerve injury, Taxol to stabilize growing microtubules, and activated protein C to clear the debris field since computational models predicted that this drug combination regulating two subcellular processes at the growth cone produces synergistic growth. Physiologically, drug treatment restored or preserved pattern electroretinograms and some of the animals had detectable visual evoked potentials in the brain and behavioral optokinetic responses. Morphology experiments show that the four-drug combination protects axons or promotes axonal regrowth to the optic chiasm and beyond. We conclude that spatially targeted drug treatment is therapeutically relevant and can restore limited functional recovery.
RESUMEN
Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.
Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hipocampo/metabolismo , Espacio Intracelular/metabolismo , Neuronas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Zinc/metabolismo , Animales , Línea Celular , Células Cultivadas , Femenino , Hipocampo/efectos de los fármacos , Humanos , Técnicas In Vitro , Espacio Intracelular/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Activador de Tejido Plasminógeno/deficiencia , Activador de Tejido Plasminógeno/genéticaRESUMEN
Spinal cord injury (SCI) is a devastating form of neurotrauma. Patients who carry one or two apolipoprotein E (ApoE)4 alleles show worse functional outcomes and longer hospital stays after SCI, but the cellular and molecular underpinnings for this genetic link remain poorly understood. Thus, there is a great need to generate animal models to accurately replicate the genetic determinants of outcomes after SCI to spur development of treatments that improve physical function. Here, we examined outcomes after a moderate contusion SCI of transgenic mice expressing human ApoE3 or ApoE4. ApoE4 mice have worse locomotor function and coordination after SCI. Histological examination revealed greater glial staining in ApoE4 mice after SCI associated with reduced levels of neuronal sprouting markers. Bulk RNA sequencing revealed that subcellular processes (SCPs), such as extracellular matrix organization and inflammatory responses, were highly ranked among upregulated genes at 7 days after SCI in ApoE4 variants. Conversely, SCPs related to neuronal action potential and neuron projection development were increased in ApoE3 mice at 21 days. In summary, our results reveal a clinically relevant SCI mouse model that recapitulates the influence of ApoE genotypes on post SCI function in individuals who carry these alleles and suggest that the mechanisms underlying worse recovery for ApoE4 animals involve glial activation and loss of sprouting and synaptic activity.
RESUMEN
Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected elevated levels of histone H3 in human CSF 24 h after spinal cord injury. Following dorsal column lesions in mice and optic nerve crushes in rats, elevated levels of extracellular histone H3 were detected at the injury site. Similar to myelin-associated inhibitors, these extracellular histones induced growth cone collapse and inhibited neurite outgrowth. Histones mediate inhibition through the transcription factor Y-box-binding protein 1 and Toll-like receptor 2, and these effects are independent of the Nogo receptor. Histone-mediated inhibition can be reversed by the addition of activated protein C in vitro, and activated protein C treatment promotes axonal regeneration in the crushed optic nerve in vivo. These findings identify extracellular histones as a new class of nerve regeneration-inhibiting molecules within the injured CNS.
RESUMEN
Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels. In addition, we demonstrate that adenoviral overexpression of Rap1 enhances neurite outgrowth in the presence of MAG and myelin, while inhibition of Rap1 activity through overexpression of Rap1GAP1 blocks neurite outgrowth. These findings suggest that Rap1GAP1 negatively regulates neurite outgrowth, making it a potential therapeutic target to promote axonal regeneration.
Asunto(s)
GTP Fosfohidrolasas/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Proyección Neuronal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Bucladesina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , GTP Fosfohidrolasas/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso , Proyección Neuronal/efectos de los fármacos , Ratas Long-Evans , Tionucleótidos/farmacología , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismoRESUMEN
COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrate cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with SARS-CoV-2 in the presence of interleukins, with clinical findings, to investigate plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes, from healthy human subjects, with SARS-CoV-2 in the absence and presence of interleukins. We find that interleukin treatment and infection results in disorganization of myofibrils, extracellular release of troponin-I, and reduced and erratic beating. Although interleukins do not increase the extent, they increase the severity of viral infection of cardiomyocytes resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health system show that a significant portion of COVID-19 patients without prior history of heart disease, have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection can underlie the heart disease in COVID-19 patients.
RESUMEN
Elevation of intracellular cyclic AMP (cAMP) levels has proven to be one of the most effective means of overcoming inhibition of axonal regeneration by myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte myelin glycoprotein. Pharmacological manipulation of cAMP through the administration of dibutyryl cAMP or rolipram leads to enhanced axonal growth both in vivo and in vitro, and importantly, upregulation of cAMP within dorsal root ganglion neurons is responsible for the conditioning lesion effect, which indicates that cAMP plays a significant role in the endogenous mechanisms that promote axonal regeneration. The effects of cAMP are transcription-dependent and are mediated through the activation of protein kinase A (PKA) and the transcription factor cyclic AMP response element binding protein (CREB). This leads to the induction of a variety of genes, several of which have been shown to overcome myelin-mediated inhibition in their own right. In this review, we will highlight the pro-regenerative effects of arginase I (ArgI), interleukin (IL)-6, secretory leukocyte protease inhibitor (SLPI), and metallothionein (MT)-I/II, and discuss their potential for therapeutic use in spinal cord injury.
RESUMEN
BACKGROUND: The local pulmonary balance between the agonist and antagonist of interleukin-1 (IL-1) may influence the development of inflammatory disease and resultant structural damage in a variety of human diseases including adult respiratory distress syndrome and asthma. OBJECTIVES: We tested the hypothesis that IL-1 cytokines are early markers for bronchopulmonary dysplasia (BPD), when measured in tracheal aspirates (TAs) obtained from premature infants being ventilated for respiratory distress syndrome during the first week of life. METHODS: Serial TAs were collected on days 1, 3, 5 and 7 from 35 preterm infants (16 BPD, 19 non-BPD) in the absence of chorioamnionitis, and were assayed for IL-1 cytokines and leukocytes. RESULTS: In spite of comparable maternal demographic and clinical characteristics, premature infants who developed BPD had higher levels of IL-1 receptor antagonist (Ra) in their airways on the first day of life. This antagonist IL-1Ra was an early and persistent marker for BPD during the first week of life. The agonist IL-1beta also increased significantly for BPD patients early, both compared to non-BPD patients, and also within the BPD group. While the early (day 1) IL-1 antagonist/agonist molar balance offered protection, by days 5 and 7, a threshold for IL-1Ra in the presence of increasing IL-1beta expression-favored pro-inflammation in the BPD group. CONCLUSIONS: We conclude that a strong and early expression of airway antagonist (IL-1Ra) proves ultimately to be sub-optimal and non-protective due to the robust expression of airway agonist (IL-1beta) seen by day 5 in premature infants who develop BPD.