Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983834

RESUMEN

The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10 Our findings could help improve root system plasticity under variable environments.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transcriptoma
2.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34531040

RESUMEN

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Asunto(s)
Genoma de Planta , Fitomejoramiento , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Humanos , Fenotipo , Fitomejoramiento/métodos
3.
Environ Res ; 245: 117922, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38151150

RESUMEN

Arsenic (As) poisoning in groundwater and rice paddy soil has increased globally, impacting human health and food security. There is an urgent need to deal with As-contaminated groundwater and soil. Biochar can be a useful remedy for toxic contaminants. This study explains the synthesis of pinecone-magnetic biochar (PC-MBC) by engineering the pinecone-pristine biochar with iron salts (FeCl3.6H2O and FeSO4.7H2O) to investigate its effects on As(V) adsorption and immobilization in water and soil, respectively. The results indicated that PC-MBC can remediate As(V)-contaminated water, with an adsorption capacity of 12.14 mg g-1 in water. Isotherm and kinetic modeling showed that the adsorption mechanism involved multilayer, monolayer, and diffusional processes, with chemisorption operating as the primary interface between As(V) and biochar. Post-adsorption analysis of PC-MBC, using FTIR and XRD, further revealed chemical fixing and outer-sphere complexation between As(V) and Fe, O, NH, and OH as the main reasons for As(V) adsorption onto PC-MBC. Recycling of PC-MBC also had excellent adsorption even after several regeneration cycles. Similarly, PC-MBC successfully immobilized As in paddy soil. Single and sequential extraction results showed the transformation of mobile forms of As to a more stable form, confirmed by non-destructive analysis using SEM, EDX, and elemental dot mapping. Thus, Fe-modified pine-cone biochar could be a suitable and cheap adsorbent for As-contaminated water and soil.


Asunto(s)
Arsénico , Carbón Orgánico , Agua Subterránea , Contaminantes del Suelo , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Adsorción , Contaminantes del Suelo/análisis , Agua , Contaminación del Agua/análisis , Suelo , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
4.
Plant Cell Rep ; 43(3): 80, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411713

RESUMEN

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.


Asunto(s)
Ecosistema , Proteómica , Inteligencia Artificial , Perfilación de la Expresión Génica , Metales/toxicidad , Suelo
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518225

RESUMEN

Food security has been a significant issue for the livelihood of smallholder family farms in highly populated regions and countries. Industrialized farming in more developed countries has increased global food supply to meet the demand, but the excessive use of synthetic fertilizers and pesticides has negative environmental impacts. Finding sustainable ways to grow more food with a smaller environmental footprint is critical. We developed an integrated cropping system that incorporates four key components: 1) intensified cropping through relay planting or intercropping, 2) within-field strip rotation, 3) soil mulching with available means, such as crop straw, and 4) no-till or reduced tillage. Sixteen field experiments, conducted with a wide range of crop inputs over 12 consecutive years (2006 to 2017), showed that the integrated system with intercropping generates significant synergies-increasing annual crop yields by 15.6 to 49.9% and farm net returns by 39.2% and decreasing the environmental footprint by 17.3%-when compared with traditional monoculture cropping. We conclude that smallholder farmers can achieve the dual goals of growing more food and lowering the environmental footprint by adopting integrated farming systems.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Abastecimiento de Alimentos/métodos , Ambiente , Granjas , Fertilizantes/efectos adversos , Plaguicidas/efectos adversos , Suelo/química
6.
Ecotoxicol Environ Saf ; 270: 115916, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171108

RESUMEN

Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.


Asunto(s)
Restauración y Remediación Ambiental , Mercurio , Contaminantes del Suelo , Mercurio/análisis , Dominio Catalítico , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , Azufre , Iones , Nitrógeno , Oxígeno
7.
J Environ Manage ; 363: 121418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852408

RESUMEN

Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.


Asunto(s)
Carbón Orgánico , Saccharum , Suelo , Zea mays , Zea mays/crecimiento & desarrollo , Suelo/química , Saccharum/crecimiento & desarrollo , Carbón Orgánico/química , Celulosa , Salinidad
8.
J Environ Manage ; 355: 120565, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461637

RESUMEN

Raw liquid anaerobic digestate was synthesised into nutrient-dense solid digestates via acidification and evaporation. Acidification retained ammonium in the digestate whilst also donating the anion to free ammonium to form an ammonium salt. Digestate was treated with the addition of sulphuric, nitric, and phosphoric acid resulting in the formation of ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively then evaporated into a solid fertiliser product. FTIR, XRD and SEM-EDS collectively confirm that the addition of acids completely converted the free ammonium in the raw digestate into their respective ammonium salt counterparts. Compounds of potassium chloride, silicon dioxide, calcium carbonate, magnesium ammonium phosphate, sodium nitrate, and sodium chloride were identified in all solid digestate samples. Plant growth and grain yield was higher in urea ammonium nitrate, raw liquid digestate and acidified digestate products compared to control and unacidified solid digestate. Urea ammonium nitrate and ammonium nitrate solid digestate had the highest dry shoot, likely due to the high available nitrogen found in both fertilisers. Overall, acidification and evaporation of liquid digestate can efficiently transform it into a valuable solid fertiliser with a high nutrient density. This process not only has the potential to mitigate handling and storage constraints of low nutrient density digestate in anaerobic digestion facilities but also offers a sustainable alternative to conventional fertilisers.


Asunto(s)
Compuestos de Amonio , Nitratos , Eliminación de Residuos , Urea/análogos & derivados , Residuos , Alimentos , Fertilizantes , Alimento Perdido y Desperdiciado , Anaerobiosis , Eliminación de Residuos/métodos , Nitrógeno/análisis
9.
Funct Integr Genomics ; 23(1): 47, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692535

RESUMEN

Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.


Asunto(s)
Fitomejoramiento , Verduras , Humanos , Verduras/genética , Productos Agrícolas/genética , Genómica , Proteómica
10.
BMC Plant Biol ; 23(1): 237, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142987

RESUMEN

BACKGROUND: Weeds reduce wheat yields in dryland farming systems. Herbicides such as metribuzin are commonly used to control weeds. However, wheat has a narrow safety margin against metribuzin. Standing crops such as wheat with weeds in the same field can also be killed by the same dose of metribuzin. Therefore, it is important to identify metribuzin resistance genes and understand the resistance mechanism in wheat for sustainable crop production. A previous study identified a significant metribuzin resistance wheat QTL, Qsns.uwa.4 A.2, explaining 69% of the phenotypic variance for metribuzin resistance. RESULTS: Two NIL pairs with the most contrasting performance in the metribuzin treatment and different in genetic backgrounds were compared using RNA sequence analysis, identifying nine candidate genes underlying Qsns.uwa.4 A.2 responsible for metribuzin resistance. Quantitative RT-qPCR further validated the candidate genes, with TraesCS4A03G1099000 (nitrate excretion transporter), TraesCS4A03G1181300 (aspartyl protease), and TraesCS4A03G0741300 (glycine-rich proteins) identified as key factors for metribuzin resistance. CONCLUSION: Identified markers and key candidate genes can be used for selecting metribuzin resistance in wheat.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Perfilación de la Expresión Génica , Triazinas
11.
BMC Plant Biol ; 23(1): 620, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057713

RESUMEN

BACKGROUND: Tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum is the most serious soil-borne disease of tobacco that significantly reduces crop yield. However, the limited availability of resistance in tobacco hinders breeding efforts for this disease. RESULTS: In this study, we conducted hydroponic experiments for the root expression profiles of D101 (resistant) and Honghuadajinyuan (susceptible) cultivars in response to BW infection at 0 h, 6 h, 1 d, 3 d, and 7d to explore the defense mechanisms of BW resistance in tobacco. As a result, 20,711 and 16,663 (total: 23,568) differentially expressed genes (DEGs) were identified in the resistant and susceptible cultivars, respectively. In brief, at 6 h, 1 d, 3 d, and 7 d, the resistant cultivar showed upregulation of 1553, 1124, 2583, and 7512 genes, while the susceptible cultivar showed downregulation of 1213, 1295, 813, and 7735 genes. Similarly, across these time points, the resistant cultivar had downregulation of 1034, 749, 1686, and 11,086 genes, whereas the susceptible cultivar had upregulation of 1953, 1790, 2334, and 6380 genes. The resistant cultivar had more up-regulated genes at 3 d and 7 d than the susceptible cultivar, indicating that the resistant cultivar has a more robust defense response against the pathogen. The GO and KEGG enrichment analysis showed that these genes are involved in responses to oxidative stress, plant-pathogen interactions, cell walls, glutathione and phenylalanine metabolism, and plant hormone signal transduction. Among the DEGs, 239 potential candidate genes were detected, including 49 phenylpropane/flavonoids pathway-associated, 45 glutathione metabolic pathway-associated, 47 WRKY, 48 ERFs, eight ARFs, 26 pathogenesis-related genes (PRs), and 14 short-chain dehydrogenase/reductase genes. In addition, two highly expressed novel genes (MSTRG.61386-R1B-17 and MSTRG.61568) encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins were identified in both cultivars at 7 d. CONCLUSIONS: This study revealed significant enrichment of DEGs in GO and KEGG terms linked to glutathione, flavonoids, and phenylpropane pathways, indicating the potential role of glutathione and flavonoids in early BW resistance in tobacco roots. These findings offer fundamental insight for further exploration of the genetic architecture and molecular mechanisms of BW resistance in tobacco and solanaceous plants at the molecular level.


Asunto(s)
Nicotiana , Ralstonia solanacearum , Nicotiana/genética , Ralstonia solanacearum/fisiología , Fitomejoramiento , Flavonoides , Glutatión , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
J Exp Bot ; 74(6): 1974-1989, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575916

RESUMEN

Although significant intraspecific variation in photosynthetic phosphorus (P) use efficiency (PPUE) has been shown in numerous species, we still know little about the biochemical basis for differences in PPUE among genotypes within a species. Here, we grew two high PPUE and two low PPUE chickpea (Cicer arietinum) genotypes with low P supply in a glasshouse to compare their photosynthesis-related traits, total foliar P concentration ([P]) and chemical P fractions (i.e. inorganic P (Pi), metabolite P, lipid P, nucleic acid P, and residual P). Foliar cell-specific nutrient concentrations including P were characterized using elemental X-ray microanalysis. Genotypes with high PPUE showed lower total foliar [P] without slower photosynthetic rates. No consistent differences in cellular [P] between the epidermis and mesophyll cells occurred across the four genotypes. In contrast, high PPUE was associated with lower allocation to Pi and metabolite P, with PPUE being negatively correlated with the percentage of these two fractions. Furthermore, a lower allocation to Pi and metabolite P was correlated with a greater allocation to nucleic acid P, but not to lipid P. Collectively, our results suggest that a different allocation to foliar P fractions, rather than preferential P allocation to specific leaf tissues, underlies the contrasting PPUE among chickpea genotypes.


Asunto(s)
Cicer , Fósforo , Fósforo/metabolismo , Cicer/genética , Hojas de la Planta/metabolismo , Fotosíntesis , Genotipo , Lípidos/análisis
13.
Crit Rev Biotechnol ; 43(7): 1035-1062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35968922

RESUMEN

Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.

14.
Microb Ecol ; 86(1): 497-508, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35864173

RESUMEN

Biological soil crusts (biocrusts) are distributed in arid and semiarid regions across the globe. Microorganisms are an essential component in biocrusts. They add and accelerate critical biochemical processes. However, little is known about the functional genes and metabolic processes of microbiomes in lichen and moss biocrust. This study used shotgun metagenomic sequencing to compare the microbiomes of lichen-dominated and moss-dominated biocrust and reveal the microbial genes and metabolic pathways involved in carbon and nitrogen cycling. The results showed that Actinobacteria, Bacteroidetes, and Acidobacteria were more abundant in moss biocrust than lichen biocrust, while Proteobacteria and Cyanobacteria were more abundant in lichen biocrust than moss biocrust. The relative abundance of carbohydrate-active enzymes and enzymes associated with carbon and nitrogen metabolism differed significantly between microbiomes of the two biocrust types. However, in the microbial communities of both biocrust types, respiration pathways dominated over carbon fixation pathways. The genes encoding carbon monoxide dehydrogenase were more abundant than those encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) involved in carbon fixation. Similarly, metabolic N-pathway diversity was dominated by nitrogen reduction, followed by denitrification, with nitrogen fixation the lowest proportion. Gene diversity involved in N cycling differed between the microbiomes of the two biocrust types. Assimilatory nitrate reduction genes had higher relative abundance in lichen biocrust, whereas dissimilatory nitrate reduction genes had higher relative abundance in moss biocrust. As dissolved organic carbon and soil organic carbon are considered the main drivers of the community structure in the microbiome of biocrust, these results indicate that biocrust type has a pivotal role in microbial diversity and related biogeochemical cycling.


Asunto(s)
Briófitas , Líquenes , Microbiota , Ecosistema , Carbono , Nitratos , Suelo/química , Fijación del Nitrógeno , Microbiología del Suelo , Nitrógeno/química
15.
Physiol Plant ; 175(4): e13969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37401892

RESUMEN

Given the challenges of population growth and climate change, there is an urgent need to expedite the development of high-yielding stress-tolerant crop cultivars. While traditional breeding methods have been instrumental in ensuring global food security, their efficiency, precision, and labour intensiveness have become increasingly inadequate to address present and future challenges. Fortunately, recent advances in high-throughput phenomics and genomics-assisted breeding (GAB) provide a promising platform for enhancing crop cultivars with greater efficiency. However, several obstacles must be overcome to optimize the use of these techniques in crop improvement, such as the complexity of phenotypic analysis of big image data. In addition, the prevalent use of linear models in genome-wide association studies (GWAS) and genomic selection (GS) fails to capture the nonlinear interactions of complex traits, limiting their applicability for GAB and impeding crop improvement. Recent advances in artificial intelligence (AI) techniques have opened doors to nonlinear modelling approaches in crop breeding, enabling the capture of nonlinear and epistatic interactions in GWAS and GS and thus making this variation available for GAB. While statistical and software challenges persist in AI-based models, they are expected to be resolved soon. Furthermore, recent advances in speed breeding have significantly reduced the time (3-5-fold) required for conventional breeding. Thus, integrating speed breeding with AI and GAB could improve crop cultivar development within a considerably shorter timeframe while ensuring greater accuracy and efficiency. In conclusion, this integrated approach could revolutionize crop breeding paradigms and safeguard food production in the face of population growth and climate change.


Asunto(s)
Productos Agrícolas , Estudio de Asociación del Genoma Completo , Productos Agrícolas/genética , Inteligencia Artificial , Fitomejoramiento/métodos , Genómica/métodos
16.
Physiol Plant ; 175(2): e13873, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36762694

RESUMEN

The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 µg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.


Asunto(s)
Cicer , Micorrizas , Fósforo , Raíces de Plantas , Fosfatos , Hierro
17.
Mol Biol Rep ; 50(4): 3787-3814, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36692674

RESUMEN

Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.


Asunto(s)
Glycine max , Multiómica , Glycine max/genética , Glycine max/metabolismo , Fitomejoramiento , Genómica/métodos , Estrés Fisiológico/genética
18.
Environ Res ; 229: 115934, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080274

RESUMEN

The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Humanos , Agricultura , Nanotecnología , Seguridad Alimentaria
19.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108842

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of ß-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tß5 and tß7) forms of NLL ß5 and ß7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete ß5 and ß7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1ß), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1ß, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tß5 and tß7 conglutin proteins did not have these molecular effects. These results suggest that ß5 and ß7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL ß-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL ß5 and ß7 excellent innovative candidates as functional foods.


Asunto(s)
Lupinus , Lupinus/metabolismo , Suplementos Dietéticos
20.
J Environ Manage ; 325(Pt B): 116558, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302299

RESUMEN

Tile-back type slopes comprise ephemeral gullies (EGs) and hillslopes; they are a unique and widely distributed micro-landform in the Loess Plateau region of China. Gully erosion from these landforms is a serious issue, but the micro-landform makes the erosion process and its estimation complex. Quantifying soil erosion processes and their distribution characteristics at different positions on tile-back type slopes will provide a clearer picture for ecological restoration to control further soil degradation. This study investigated the erosion process of tile-back type slope with non-uniform slopes using a 3D photo-reconstruction method during eight successive simulated rainfall events. The results showed that EG erosion began with a chain of intermittent headcuts. When the accumulated rainfall reached 76 mm, serious collapses dramatically increased the amount of sediment by 216% after the first rainfall (cumulative rainfall was about 15 mm). We quantified the sediment contribution of EG erosion (46.20%), rill erosion (35.62%), and inter-rill erosion (18.18%) to total soil loss. The erosion area of the steep slope section and extremely steep slope section accounted for 33.26% and 66.74% of the total erosion area, respectively. Moreover, sediment amounts significantly correlated with morphological parameters, particularly the amount of EG erosion and maximum gully depth, with a correlation coefficient of 0.98. Cumulative gully length and erosion area had the greatest effect on rill erosion, with a correlation coefficient of 0.97. These results provide insight into the qualitative and quantitative understanding of EG erosion process on Loess Plateau of China and an important reference for the rational arrangement of EG control measures.


Asunto(s)
Imagenología Tridimensional , Suelo , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA