Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2402257, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990893

RESUMEN

The wet-chemical synthesis of 3D confined antimony nanoparticles (Sb-NP) at low and high temperatures is described. Using reaction conditions that are mild in temperature and strong in reducing power allows the synthesis of amorphous Sb-NP stabilized with organic ligands. Exchanging the organic ligand 1-octanethiol by iodide enabled to investigate the unusual strong stability of this metastable material through simultaneous thermal analysis combining differential scanning calorimetry and thermogravimetric analysis. Additionally, in situ high temperature powder x-ray diffraction (p-XRD) shows a significant increase in stabilization of the amorphous phase in comparison to thin layered, 1D confined Sb or bulk material. Further, it is shown with scattering-type scanning near-field optical microscopy (s-SNOM) experiments that the optical response of the different phases in Sb-NP make the distinctness of each phase possible. It is proposed that the Sb-NP introduced here can serve as a 3D-confined optically addressable nanomaterial of miniaturized phase change memory devices.

2.
ACS Nano ; 16(10): 16617-16623, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36205460

RESUMEN

In tetralayer graphene, three inequivalent layer stackings should exist; however, only rhombohedral (ABCA) and Bernal (ABAB) stacking have so far been observed. The three stacking sequences differ in their electronic structure, with the elusive third stacking (ABCB) being unique as it is predicted to exhibit an intrinsic bandgap as well as locally flat bands around the K points. Here, we use scattering-type scanning near-field optical microscopy and confocal Raman microscopy to identify and characterize domains of ABCB stacked tetralayer graphene. We differentiate between the three stacking sequences by addressing characteristic interband contributions in the optical conductivity between 0.28 and 0.56 eV with amplitude and phase-resolved near-field nanospectroscopy. By normalizing adjacent flakes to each other, we achieve good agreement between theory and experiment, allowing for the unambiguous assignment of ABCB domains in tetralayer graphene. These results establish near-field spectroscopy at the interband transitions as a semiquantitative tool, enabling the recognition of ABCB domains in tetralayer graphene flakes and, therefore, providing a basis to study correlation physics of this exciting phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA