Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Prod Res ; 35(21): 3820-3823, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32174174

RESUMEN

Paulownin, a natural compound obtained from the tree Tecoma stans var. stans, was chemically modified by alkylation of its hydroxyl position. Thirteen novel lignans derivatives synthesized via a copper-catalyzed cycloaddition (CuAAC), known as click reaction, using different organic azides and lignan terminal alkyne. Characterization by mass spectrometry, NMR (1H and 13C) and infrared spectroscopy. These novel molecules were submitted to biological tests, using the MTT colorimetric technique aiming at the verification of their antitumor properties with six different cells lines. Biological evaluation was satisfactory and one of compounds showed selectivity index ten times higher than podophyllotoxin.


Asunto(s)
Azidas , Química Clic , Alquinos , Hidrocarburos Aromáticos con Puentes , Catálisis , Cobre , Reacción de Cicloadición , Lignanos , Podofilotoxina
2.
PLoS Negl Trop Dis ; 15(11): e0009839, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727099

RESUMEN

Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.


Asunto(s)
Aedes/virología , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Aedes/fisiología , Animales , Brasil/epidemiología , Enfermedades Endémicas , Femenino , Humanos , Masculino , Mosquitos Vectores/fisiología , Glándulas Salivales/virología , Carga Viral , Virus Zika/genética , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
3.
Viruses ; 14(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35062224

RESUMEN

The successful spread and maintenance of the dengue virus (DENV) in mosquito vectors depends on their viral infection susceptibility, and parameters related to vector competence are the most valuable for measuring the risk of viral transmission by mosquitoes. These parameters may vary according to the viral serotype in circulation and in accordance with the geographic origin of the mosquito population that is being assessed. In this study, we investigated the effect of DENV serotypes (1-4) with regards to the infection susceptibility of five Brazilian Ae. aegypti populations from Manaus, the capital of the state of Amazonas, Brazil. Mosquitoes were challenged by oral infection with the DENV serotypes and then tested for the presence of the arbovirus using quantitative PCR at 14 days post-infection, which is the time point that corresponds to the extrinsic incubation period of Ae. aegypti when reared at 28 °C. Thus, we were able to determine the infection patterns for DENV-1, -2, -3 and -4 in the mosquito populations. The mosquitoes had both interpopulation and inter-serotype variation in their viral susceptibilities. All DENV serotypes showed a similar tendency to accumulate in the body in a greater amount than in the head/salivary gland (head/SG), which does not occur with other flaviviruses. For DENV-1, DENV-3, and DENV-4, the body viral load varied among populations, but the head/SG viral loads were similar. Differently for DENV-2, both body and head/SG viral loads varied among populations. As the lack of phenotypic homogeneity represents one of the most important reasons for the long-term fight against dengue incidence, we expect that this study will help us to understand the dynamics of the infection patterns that are triggered by the distinct serotypes of DENV in mosquitoes.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Mosquitos Vectores/virología , Animales , Brasil , Virus del Dengue/genética , Femenino , Serogrupo , Carga Viral
4.
BMC Complement Med Ther ; 20(1): 246, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767975

RESUMEN

BACKGROUND: Plant species from the genus Tecoma are found in tropical and subtropical regions around the world. Some of them are grown as ornamental plants and others can be used as medicinal plants. In the present study, ethanolic extracts from trunks and leaves of Tecoma species were tested in vitro using assays against the Zika virus. METHODS: There was a total of 8 extracts obtained from different anatomical parts of three Tecoma species. The Tecoma castaneifolia, T. garrocha, T. stans var. angustata and T. stans var. stans were prepared by percolation with ethanol. The antiviral activity was assayed in vitro against the Zika virus by the MTT colorimetric method (n = 3). The UPLC-DAD-MS analysis of ethanolic extracts was performed from all the studied species. The biofractionation of T. stans var. stans trunk extract using different separation techniques led to the isolation of crenatoside compound. RESULTS: Ethanolic extract from Tecoma species leaves were more active against the Zika virus (EC50 149.90 to 61.25 µg/mL) when compared to the trunk extracts tested (EC50 131.0 to 66.79 µg/mL and two were not active). The ethyl acetate and aqueous fractions obtained from T. stans var. stans trunk were active against the Zika virus with EC50 values of 149.90 and 78.98 µg/mL, respectively. Crenatoside is a phenylethanoid glycoside isolated from the ethyl acetate of T. stans var. stans trunk extract. This compound was tested and exhibited EC50 34.78 µM (21.64 µg/mL), thus demonstrating a better result than the original ethanolic extracts as well as others extracts of Tecoma species, and it was more active than the positive control, ribavirin (386.84 µM). Furthermore, its selectivity index was at least 2.5 times higher than the tested ethanolic extracts and 11.1 times more potent than ribavirin. CONCLUSION: The Tecoma species demonstrated interesting in vitro activity against the Zika virus. The crenatoside, phenylethanoid glycoside that was for the first time isolated from Tecoma stans var. stans, exhibited a potent and relevant anti-Zika virus activity, being more active than ribavirin (positive control). The data show that crenatoside, was a promising compound with in vitro antiviral activity against the Zika virus.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Bignoniaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Virus Zika/efectos de los fármacos , Animales , Brasil , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Hojas de la Planta , Células Vero
5.
Braz. J. Pharm. Sci. (Online) ; 58: e181096, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1420472

RESUMEN

Abstract A phytochemical study of Tecoma genus (Bignoniaceae) was accomplished by antitumor activity of ethanolic extracts. Species of this genus are composed of small shrubs often used as ornamental plants. The Tecoma stans species is used in folk medicine for different purposes. Recent work shows in vitro anticancer activity against human breast cancer. The ethanolic extracts from leaves and trunks of Tecoma casneifolia, T. garrocha, T. stans var. angustata and T. stans var. stans were tested in vitro. The assays used were against line tumor cells by the MTT method and the most active extracts were further studied. In this way, the ethanolic extract from T. stans var. stans trunks presented the higher cytotoxicity against the tumor cell lines studied (CC50 0.02 to 0.55 µg/ml) when compared to the other extracts tested (CC50 0.08 to 200.0 µg/ml). Accordingly, this extract was selected for chromatographic fractionation from which five known lignans were isolated. Further, paulownin, paulownin acetate, sesamin, olivil and cycloolivil were identified using 13C and 1H NMR, IR, UV and spectroscopy and spectrometric MS techniques. These isolated compounds were tested and exhibited CC50 ranging from 13.01 to100.0 µg/ml which is superior to the ethanolic extract of trunk of T. stans


Asunto(s)
Extractos Vegetales/análisis , Lignanos/efectos adversos , Bignoniaceae , Técnicas In Vitro/métodos , Neoplasias de la Mama/patología , Espectroscopía de Protones por Resonancia Magnética/métodos , Acetatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA