Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 121: 40-52, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33879391

RESUMEN

In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.


Asunto(s)
Redes Reguladoras de Genes/genética , Laminina/inmunología , Espermatogénesis/inmunología , Testículo/inmunología , Animales , Masculino , Ratones , Ratas
2.
Semin Cell Dev Biol ; 121: 53-62, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33867214

RESUMEN

In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.


Asunto(s)
Hidrazinas/uso terapéutico , Indazoles/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Espermatogénesis/inmunología , Animales , Humanos , Hidrazinas/farmacología , Indazoles/farmacología , Masculino , Transducción de Señal
3.
Semin Cell Dev Biol ; 121: 99-113, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34059418

RESUMEN

Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Receptores de Fenciclidina/metabolismo , Espermatogénesis/genética , Testículo/fisiología , Animales , Drosophila , Masculino
4.
Reprod Biol Endocrinol ; 22(1): 36, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570783

RESUMEN

Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.


Asunto(s)
Actinas , Células de Sertoli , Ratas , Animales , Masculino , Actinas/metabolismo , Células de Sertoli/metabolismo , Cadmio , Ratas Sprague-Dawley , Barrera Hematotesticular/metabolismo , Microtúbulos/metabolismo , Testículo/metabolismo , Espermatogénesis/fisiología , Mamíferos
5.
Semin Cell Dev Biol ; 81: 88-96, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29410206

RESUMEN

It is conceivable that spermatid apico-basal polarity and spermatid planar cell polarity (PCP) are utmost important to support spermatogenesis. The orderly arrangement of developing germ cells in particular spermatids during spermiogenesis are essential to obtain structural and nutrient supports from the fixed number of Sertoli cells across the limited space of seminiferous epithelium in the tubules following Sertoli cell differentiation by ∼17 day postpartum (dpp) in rodents and ∼12 years of age at puberty in humans. Yet few studies are found in the literature to investigate the role of these proteins to support spermatogenesis. Herein, we briefly summarize recent findings in the field, in particular emerging evidence that supports the concept that apico-basal polarity and PCP are conferred by the corresponding polarity proteins through their effects on the actin- and microtubule (MT)-based cytoskeletons. While much research is needed to bridge our gaps of understanding cell polarity, cytoskeletal function, and signaling proteins, a critical evaluation of some latest findings as summarized herein provides some important and also thought-provoking concepts to design better functional experiments to address this important, yet largely expored, research topic.


Asunto(s)
Actinas/metabolismo , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Espermátides/fisiología , Animales , Humanos , Masculino , Células de Sertoli/citología , Células de Sertoli/metabolismo , Testículo/citología , Testículo/metabolismo
6.
Semin Cell Dev Biol ; 81: 46-53, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29174914

RESUMEN

Non-receptor Src family kinases (SFKs), most notably c-Src and c-Yes, are recently shown to be expressed by Sertoli and/or germ cells in adult rat testes. Studies have shown that SFKs are involved in modulating the cell cytoskeletal function, and involved in endocytic vesicle-mediated protein endocytosis, transcytosis and/or recycling as well as intracellular protein degradation events. Furthermore, a knockdown to SFKs, in particular c-Yes, has shown to induce defects in spermatid polarity. These findings, coupled with emerging evidence in the field, thus prompt us to critically evaluate them to put forth a developing concept regarding the role of SFKs and cell polarity, which will become a basis to design experiments for future investigations.


Asunto(s)
Polaridad Celular/fisiología , Células de Sertoli/metabolismo , Testículo/metabolismo , Familia-src Quinasas/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Masculino , Células de Sertoli/citología , Espermátides/citología , Espermátides/fisiología , Testículo/citología , Familia-src Quinasas/genética
7.
Semin Cell Dev Biol ; 81: 21-32, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28965865

RESUMEN

Cell polarity in the adult mammalian testis refers to the polarized alignment of developing spermatids during spermiogenesis and the polarized organization of organelles (e.g., phagosomes, endocytic vesicles, Sertoli cell nuclei, Golgi apparatus) in Sertoli cells and germ cells to support spermatogenesis. Without these distinctive features of cell polarity in the seminiferous epithelium, it is not possible to support the daily production of millions of sperm in the limited space provided by the seminiferous tubules in either rodent or human males through the adulthood. In short, cell polarity provides a novel mean to align spermatids and the supporting organelles (e.g., phagosomes, Golgi apparatus, endocytic vesicles) in a highly organized fashion spatially in the seminiferous epithelium during the epithelial cycle of spermatogenesis. This is analogous to different assembling units in a manufacturing plant such that as developing spermatids move along the "assembly line" conferred by Sertoli cells, different structural/functional components can be added to (or removed from) the developing spermatids during spermiogenesis, so that functional spermatozoa are produced at the end of the assembly line. Herein, we briefly review findings regarding the regulation of cell polarity in the testis with specific emphasis on developing spermatids, supported by an intriguing network of regulatory proteins along a local functional axis. Emerging evidence has suggested that cell cytoskeletons provide the tracks which in turn confer the unique assembly lines in the seminiferous epithelium. We also provide some thought-provoking concepts based on which functional experiments can be designed in future studies.


Asunto(s)
Polaridad Celular , Citoesqueleto/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Animales , Humanos , Masculino , Microtúbulos/metabolismo , Células de Sertoli/citología , Espermátides/citología , Espermatogénesis , Testículo/citología
8.
Am J Physiol Endocrinol Metab ; 317(1): E121-E138, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31112404

RESUMEN

Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.


Asunto(s)
Barrera Hematotesticular/metabolismo , Anticonceptivos Masculinos/farmacología , Hidrazinas/farmacología , Indazoles/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína S6 Ribosómica/metabolismo , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mutagénesis Sitio-Dirigida , Ratas , Ratas Sprague-Dawley , Proteína S6 Ribosómica/genética , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatocitos/metabolismo , Espermatogénesis/efectos de los fármacos
9.
Am J Physiol Endocrinol Metab ; 315(5): E924-E948, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016153

RESUMEN

In the mammalian testis, spermatogenesis is dependent on the microtubule (MT)-specific motor proteins, such as dynein 1, that serve as the engine to support germ cell and organelle transport across the seminiferous epithelium at different stages of the epithelial cycle. Yet the underlying molecular mechanism(s) that support this series of cellular events remain unknown. Herein, we used RNAi to knockdown cytoplasmic dynein 1 heavy chain (Dync1h1) and an inhibitor ciliobrevin D to inactivate dynein in Sertoli cells in vitro and the testis in vivo, thereby probing the role of dynein 1 in spermatogenesis. Both treatments were shown to extensively induce disruption of MT organization across Sertoli cells in vitro and the testis in vivo. These changes also perturbed the transport of spermatids and other organelles (such as phagosomes) across the epithelium. These changes thus led to disruption of spermatogenesis. Interestingly, the knockdown of dynein 1 or its inactivation by ciliobrevin D also perturbed gross disruption of F-actin across the Sertoli cells in vitro and the seminiferous epithelium in vivo, illustrating there are cross talks between the two cytoskeletons in the testis. In summary, these findings confirm the role of cytoplasmic dynein 1 to support the transport of spermatids and organelles across the seminiferous epithelium during the epithelial cycle of spermatogenesis.


Asunto(s)
Dineínas/metabolismo , Espermátides/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Transporte Biológico/fisiología , Dineínas/genética , Masculino , Quinazolinonas/farmacología , Interferencia de ARN , Ratas , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermátides/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
10.
Biochim Biophys Acta Biomembr ; 1860(1): 141-153, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28450047

RESUMEN

Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Asunto(s)
Barrera Hematotesticular/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Modelos Cardiovasculares , Transducción de Señal/fisiología , Animales , Humanos , Masculino
11.
FASEB J ; 30(4): 1436-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26678449

RESUMEN

Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.-Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.


Asunto(s)
Barrera Hematotesticular/metabolismo , Conexina 43/genética , Meiosis/genética , Espermatogénesis/genética , Animales , Barrera Hematotesticular/efectos de los fármacos , Conexina 43/metabolismo , Expresión Génica/efectos de los fármacos , Hidrazinas/farmacología , Immunoblotting , Indazoles/farmacología , Masculino , Ratones Noqueados , Microscopía Fluorescente , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermátides/efectos de los fármacos , Espermátides/metabolismo , Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Testículo/citología , Testículo/efectos de los fármacos , Testículo/metabolismo
12.
Reprod Fertil Dev ; 29(5): 998-1011, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28442050

RESUMEN

Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50mg kg-1 to disrupt Sertoli-germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood-testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P<0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte-spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood-testis barrier.


Asunto(s)
Antiespermatogénicos/farmacología , Barrera Hematotesticular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Indazoles/farmacología , Células de Sertoli/efectos de los fármacos , alfa Catenina/metabolismo , gamma Catenina/metabolismo , Animales , Barrera Hematotesticular/metabolismo , Citoesqueleto/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Proto-Oncogenes Mas , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/efectos de los fármacos , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo
13.
Hum Reprod ; 29(6): 1279-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24532171

RESUMEN

STUDY QUESTION: Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood-testis barrier (BTB)? SUMMARY ANSWER: Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY: Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION: We examined the effects of two environmental toxicants: cadmium chloride (0.5-20 µM) and bisphenol A (0.4-200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE: Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION: (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction.


Asunto(s)
Actinas/metabolismo , Compuestos de Bencidrilo/farmacología , Cloruro de Cadmio/farmacología , Adhesión Celular/efectos de los fármacos , Contaminantes Ambientales/farmacología , Fenoles/farmacología , Células de Sertoli/efectos de los fármacos , Células Cultivadas , Humanos , Masculino , Células de Sertoli/metabolismo
14.
J Obes ; 2024: 9587300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566891

RESUMEN

The "new epidemic," as WHO calls obesity, is caused by overeating, which, having exceeded the body's actual needs, accumulates in the form of health-damaging fat deposits. Moving more and eating less is the main remedy, but eating belongs to vital instincts, which are beyond the control of reason. In this sense, eating is different from drinking and breathing because without food it is possible to survive for a few weeks, without water for a few days, without oxygen for a few minutes. The first part of this article provides an overview of obesity and its treatment, focusing on the new anorectic anticipated in the title. The second part focuses on compulsive obesity, typically represented by constitutional obesity and food addiction. The article concludes with a discussion of the pharmacological treatment of compulsive diseases, to which some forms of obesity belong.


Asunto(s)
Depresores del Apetito , Adicción a la Comida , Humanos , Sobrepeso/complicaciones , Obesidad/epidemiología , Adicción a la Comida/complicaciones , Alimentos , Conducta Alimentaria
15.
Nat Med ; 12(11): 1323-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17072312

RESUMEN

Throughout spermatogenesis, developing germ cells remain attached to Sertoli cells via testis-specific anchoring junctions. If adhesion between these cell types is compromised, germ cells detach from the seminiferous epithelium and infertility often results. Previously, we reported that Adjudin is capable of inducing germ cell loss from the epithelium. In a small subset of animals, however, oral administration of Adjudin (50 mg per kg body weight (b.w.) for 29 d) resulted in adverse effects such as liver inflammation and muscle atrophy. Here, we report a novel approach in which Adjudin is specifically targeted to the testis by conjugating Adjudin to a recombinant follicle-stimulating hormone (FSH) mutant, which serves as its 'carrier'. Using this approach, infertility was induced in adult rats when 0.5 microg Adjudin per kg b.w. was administered intraperitoneally, which was similar to results when 50 mg per kg b.w. was given orally. This represents a substantial increase in Adjudin's selectivity and efficacy as a male contraceptive.


Asunto(s)
Adhesión Celular , Anticonceptivos Masculinos , Células Germinativas/citología , Animales , Hormona Folículo Estimulante/administración & dosificación , Hormona Folículo Estimulante/química , Hidrazinas/administración & dosificación , Hidrazinas/química , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Indazoles/administración & dosificación , Indazoles/química , Indazoles/farmacocinética , Indazoles/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Testículo/efectos de los fármacos
16.
Adv Exp Med Biol ; 763: 318-33, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23397632

RESUMEN

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in mammals including rodents and humans. It is used to sequester meiosis I and II, postmeiotic spermatid development via spermiogenesis and the release of sperm at spermiation from the systemic circulation, such that these events take place in an immune-privileged site in the adluminal (apical) compartment behind the BTB, segregated from the host immune system. Additionally, drug transporters, namely efflux (e.g., P-glycoprotein) and influx (e.g., Oatp3) pumps, many of which are integral membrane proteins in Sertoli cells at the BTB also work cooperatively to restrict the entry of drugs, toxicants, chemicals, steroids and other xenobiotics into the adluminal compartment. As such, the BTB that serves as an important physiological and selective barrier to protect germ cell development also poses a "hurdle" in male contraceptive development. For instance, adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, a potential nonhormonal male contraceptive that exerts its effects on germ cell adhesion, most notably at the Sertoli cell-spermatid interface, to induce "premature" germ cell loss from the seminiferous epithelium mimicking spermiation, has a relatively poor bioavailability largely because of the BTB. Since male contraceptives (e.g., adjudin) will be used by healthy men for an extended period of his life span after puberty, a better understanding on the BTB is necessary in order to effectively deliver drugs across this blood-tissue barrier in particular if these compounds exert their effects on developing germ cells in the adluminal compartment. This can also reduce long-term toxicity and health risk if the effective dosing can be lowered in order to widen the margin between its safety and efficacy. Herein, we summarize latest findings in this area of research, we also provide a critical evaluation on research areas that deserve attention in future studies.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Barrera Hematotesticular/metabolismo , Hidrazinas/farmacología , Indazoles/farmacología , Testículo/metabolismo , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Barrera Hematotesticular/efectos de los fármacos , Anticonceptivos Masculinos/administración & dosificación , Anticonceptivos Masculinos/farmacología , Humanos , Hidrazinas/administración & dosificación , Indazoles/administración & dosificación , Masculino , Tasa de Depuración Metabólica , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Estructura Terciaria de Proteína , Ratas , Homología de Secuencia de Aminoácido , Espermátides/metabolismo , Testículo/efectos de los fármacos
17.
Adv Exp Med Biol ; 763: 334-355, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23397633

RESUMEN

The blood-testis barrier (BTB), similar to other blood-tissue barriers, such as the blood-brain barrier and the blood-retinal barrier, is used to protect the corresponding organ from harmful substances (e.g., xenobiotics) including drugs and foreign compounds. More importantly, the BTB allows postmeiotic spermatid development to take place in an immune privileged site at the adluminal (or apical) compartment to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. The BTB, however, also poses an obstacle in developing nonhormonal-based male contraceptives by sequestering drugs (e.g., adjudin) that exert their effects on germ cells in the adluminal compartment. The effects of these drugs include disruption of germ cell cycle progression and development, apoptosis, cell adhesion, metabolism and others. Recent studies have demonstrated that there is a functional axis that operates locally in the seminiferous epithelium to co-ordinate different cellular events across the Sertoli cell epithelium, such as spermiation and BTB restructuring during the seminiferous epithelial cycle of spermatogenesis. Components of this functional axis, such as the apical ectoplasmic specialization (apical ES, a testis-specific atypical anchoring junction type) and the BTB, in particular their constituent protein complexes, such as alpha6beta1-integrin and occludin at the apical ES and the BTB, respectively, can be the target of male contraception. In this chapter, we highlight recent advances regarding the likely mechanism of action of adjudin in this functional axis with emphasis on the use of molecular modeling technique to facilitate the design of better compounds in male contraceptive development.


Asunto(s)
Barrera Hematotesticular/efectos de los fármacos , Anticoncepción/métodos , Espermatogénesis/efectos de los fármacos , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Secuencia de Aminoácidos , Animales , Barrera Hematotesticular/metabolismo , Dominio Catalítico , Anticonceptivos Masculinos/metabolismo , Anticonceptivos Masculinos/farmacología , Humanos , Hidrazinas/metabolismo , Hidrazinas/farmacología , Enlace de Hidrógeno , Indazoles/metabolismo , Indazoles/farmacología , Integrina alfa6beta1/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Ocludina/metabolismo , Epitelio Seminífero/efectos de los fármacos , Epitelio Seminífero/metabolismo , Alineación de Secuencia , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo
18.
Pharmaceutics ; 14(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35057084

RESUMEN

Low-dose aspirin represents the best option in the secondary prevention of coronary artery disease, but its extensive use in primary prevention is limited by the occurrence of gastric mucosal lesions and increased risk of bleeding. We investigated the safety profile of a novel sublingual aspirin formulation in 200 healthy volunteers, randomly assigned to ten (n = 20 each) different 7-day once-daily treatment regimens. Gastric mucosal injury based on the modified Lanza score (MLS), the histopathology of gastric mucosa and the serum determination of thromboxane B2 (TXB2) and urinary 11-dehydro-TXB2 levels were evaluated at basal as well as after 7 days of each placebo or aspirin treatment regimen. In Groups A and B (placebo-oral and sublingual, respectively), no changes in MLS and in gastric mucosal micro-vessel diameter were found at day 7. In contrast, in Groups C and D (oral standard aspirin-100 and 50 mg daily, respectively), the median MLS was significantly increased. Very few changes were found in Groups E and F (standard sublingual aspirin-100 and 50 mg, respectively). Groups G and H (oral administration of micronized collagen-cogrinded aspirin) showed gastric protection compared to Groups C and D. Moreover, Groups I and L (sublingual collagen-cogrinded aspirin-100 and 50 mg, respectively) showed a significant reduction (Group I) or total abolition (Group L) of gastric mucosal lesions and no difference compared to the standard one in serum TXB2 and urinary 11-dehydro-TXB2 levels. In conclusion, our data show that the new formulation leads to a better safety profile compared to standard aspirin, representing a better therapeutic option for extended use in primary and secondary prevention of cardiovascular diseases.

19.
Pharmacol Rev ; 60(2): 146-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18483144

RESUMEN

In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.


Asunto(s)
Comunicación Celular , Anticonceptivos Masculinos/farmacología , Uniones Intercelulares/fisiología , Testículo/metabolismo , Uniones Adherentes/fisiología , Animales , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Humanos , Masculino , Células de Sertoli/fisiología , Células de Sertoli/ultraestructura , Espermatocitos/efectos de los fármacos , Espermatocitos/fisiología , Espermatocitos/ultraestructura , Espermatogénesis/fisiología , Testículo/ultraestructura
20.
Front Endocrinol (Lausanne) ; 12: 800327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002976

RESUMEN

There is emerging evidence that environmental toxicants, in particular endocrine disrupting chemicals (EDCs) such as cadmium and perfluorooctanesulfonate (PFOS), induce Sertoli cell and testis injury, thereby perturbing spermatogenesis in humans, rodents and also widelife. Recent studies have shown that cadmium (e.g., cadmium chloride, CdCl2) and PFOS exert their disruptive effects through putative signaling proteins and signaling cascade similar to other pharmaceuticals, such as the non-hormonal male contraceptive drug adjudin. More important, these signaling proteins were also shown to be involved in modulating testis function based on studies in rodents. Collectively, these findings suggest that toxicants are using similar mechanisms that used to support spermatogenesis under physiological conditions to perturb Sertoli and testis function. These observations are physiologically significant, since a manipulation on the expression of these signaling proteins can possibly be used to manage the toxicant-induced male reproductive dysfunction. In this review, we highlight some of these findings and critically evaluate the possibility of using this approach to manage toxicant-induced defects in spermatrogenesis based on recent studies in animal models.


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Reproducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Animales , Fluorocarburos/toxicidad , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Reproducción/fisiología , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Transducción de Señal/fisiología , Espermatogénesis/fisiología , Testículo/citología , Testículo/efectos de los fármacos , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA