RESUMEN
BACKGROUND: Anthocyanins and carotenoids are phytochemicals that may benefit health through provitamin A carotenoid (PAC), antioxidant, and anti-inflammatory activities. These bioactives may mitigate chronic diseases. Consumption of multiple phytochemicals may impact bioactivity in synergistic or antagonistic manners. OBJECTIVES: Two studies in weanling male Mongolian gerbils assessed the relative bioefficacy of ß-carotene equivalents (BCEs) to vitamin A (VA) with simultaneous consumption of the non-PAC lycopene or anthocyanins from multicolored carrots. METHODS: After 3-wk VA depletion, 5-6 gerbils were killed as baseline groups. The remaining gerbils were divided into 4 carrot treatment groups; the positive control group received retinyl acetate and the negative control group was given vehicle soybean oil (n = 10/group; n = 60/study). In the lycopene study, gerbils consumed feed varying in lycopene sourced from red carrots. In the anthocyanin study, gerbils consumed feed varying in anthocyanin content sourced from purple-red carrots, and positive controls received lycopene. Treatment feeds had equalized BCEs: 5.59 ± 0.96 µg/g (lycopene study) and 7.02 ± 0.39 µg/g (anthocyanin study). Controls consumed feeds without pigments. Serum, liver, and lung samples were analyzed for retinol and carotenoid concentrations using HPLC. Data were analyzed by ANOVA and Tukey's studentized range test. RESULTS: In the lycopene study, liver VA did not differ between groups (0.11 ± 0.07 µmol/g) indicating no effect of varying lycopene content. In the anthocyanin study, liver VA concentrations in the medium-to-high (0.22 ± 0.14 µmol/g) and medium-to-low anthocyanin (0.25 ± 0.07 µmol/g) groups were higher than the negative control (0.11 ± 0.07 µmol/g) (P < 0.05). All treatment groups maintained baseline VA concentrations (0.23 ± 0.06 µmol/g). Combining studies, serum retinol had 12% sensitivity to predict VA deficiency, defined as 0.7 µmol/L. CONCLUSIONS: These gerbil studies suggested that simultaneous consumption of carotenoids and anthocyanins does not impact relative BCE bioefficacy. Breeding carrots for enhanced pigments to improve dietary intake should continue.
Asunto(s)
Daucus carota , beta Caroteno , Animales , Masculino , Vitamina A , Daucus carota/química , Antocianinas/farmacología , Licopeno , Gerbillinae , CarotenoidesRESUMEN
KEY MESSAGE: The principal phenotypic determinants of market class in carrot-the size and shape of the root-are under primarily additive, but also highly polygenic, genetic control. The size and shape of carrot roots are the primary determinants not only of yield, but also market class. These quantitative phenotypes have historically been challenging to objectively evaluate, and thus subjective visual assessment of market class remains the primary method by which selection for these traits is performed. However, advancements in digital image analysis have recently made possible the high-throughput quantification of size and shape attributes. It is therefore now feasible to utilize modern methods of genetic analysis to investigate the genetic control of root morphology. To this end, this study utilized both genome wide association analysis (GWAS) and genomic-estimated breeding values (GEBVs) and demonstrated that the components of market class are highly polygenic traits, likely under the influence of many small effect QTL. Relatively large proportions of additive genetic variance for many of the component phenotypes support high predictive ability of GEBVs; average prediction ability across underlying market class traits was 0.67. GWAS identified multiple QTL for four of the phenotypes which compose market class: length, aspect ratio, maximum width, and root fill, a previously uncharacterized trait which represents the size-independent portion of carrot root shape. By combining digital image analysis with GWAS and GEBVs, this study represents a novel advance in our understanding of the genetic control of market class in carrot. The immediate practical utility and viability of genomic selection for carrot market class is also described, and concrete guidelines for the design of training populations are provided.
Asunto(s)
Daucus carota , Estudio de Asociación del Genoma Completo , Daucus carota/genética , Genómica/métodos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Vitamin A (VA) deficiency is a public health problem in some countries. Fortification, supplementation, and increased provitamin A consumption through biofortification are efficacious, but monitoring is needed due to risk of excessive VA intake when interventions overlap. OBJECTIVES: Two studies in 28-36-d-old male Mongolian gerbils simulated exposure to multiple VA interventions to determine the effects of provitamin A carotenoid consumption from biofortified maize and carrots and preformed VA fortificant on status. METHODS: Study 1 was a 2 × 2 × 2 factorial design (n = 85) with high-ß-carotene maize, orange carrots, and VA fortification at 50% estimated gerbil needs, compared with white maize and white carrot controls. Study 2 was a 2 × 3 factorial design (n = 66) evaluating orange carrot and VA consumption through fortification at 100% and 200% estimated needs. Both studies utilized 2-wk VA depletion, baseline evaluation, 9-wk treatments, and liver VA stores by HPLC. Intestinal scavenger receptor class B member 1 (Scarb1), ß-carotene 15,15'-dioxygenase (Bco1), ß-carotene 9',10'-oxygenase (Bco2), intestine-specific homeobox (Isx), and cytochrome P450 26A1 isoform α1 (Cyp26a1) expression was analyzed by qRT-PCR in study 2. RESULTS: In study 1, liver VA concentrations were significantly higher in orange carrot (0.69 ± 0.12 µmol/g) and orange maize groups (0.52 ± 0.21 µmol/g) compared with baseline (0.23 ± 0.069 µmol/g) and controls. Liver VA concentrations from VA fortificant alone (0.11 ± 0.053 µmol/g) did not differ from negative control. In study 2, orange carrot significantly enhanced liver VA concentrations (0.85 ± 0.24 µmol/g) relative to baseline (0.43 ± 0.14 µmol/g), but VA fortificant alone (0.42 ± 0.21 µmol/g) did not. Intestinal Scarb1 and Bco1 were negatively correlated with increasing liver VA concentrations (P < 0.01, r2 = 0.25-0.27). Serum retinol concentrations did not differ. CONCLUSIONS: Biofortified carrots and maize without fortification prevented VA deficiency in gerbils. During adequate provitamin A dietary intake, preformed VA intake resulted in excessive liver stores in gerbils, despite downregulation of carotenoid absorption and cleavage gene expression.
Asunto(s)
Carotenoides/administración & dosificación , Carotenoides/farmacocinética , Hígado/química , Vitamina A/administración & dosificación , Vitamina A/farmacocinética , Alimentación Animal , Animales , Biofortificación , Carotenoides/efectos adversos , Carotenoides/metabolismo , Daucus carota , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Gerbillinae , Hígado/metabolismo , Masculino , Vitamina A/efectos adversos , Zea maysRESUMEN
BACKGROUND: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. METHODS: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. RESULTS: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. CONCLUSIONS: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.
Asunto(s)
Biología Computacional/métodos , Daucus carota/crecimiento & desarrollo , Proteínas de Plantas/genética , Mapeo Cromosómico , Minería de Datos , Bases de Datos Genéticas , Daucus carota/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Carrots are an important horticultural crop that contain provitamin A carotenoids (PACs). Orange carrots have high concentrations of α-carotene, which upon central cleavage yields 1 retinal and 1 α-retinal molecule. The leaves of carrot plants are a source of PACs when consumed. OBJECTIVE: Male Mongolian gerbils aged 27-30 d were used to assess the bioefficacy of carrot leaves to maintain vitamin A (VA) status and investigate whether the ratio of α- to ß-carotene (α:ß-carotene) affected bioefficacy. METHODS: After 3 wk depletion, baseline gerbils were killed (n = 6) and the remaining gerbils (n = 60) were divided into 6 groups to receive 4 VA-deficient, carrot leaf-fortified feeds (1:1.4, 1:2.5, 1:5.0, and 1:80 α:ß-carotene ratio) equalized to 4.8 nmol/g ß-carotene equivalents (ßCEs), or VA-deficient feed with (VA+) or without (VA-) retinyl acetate supplements. Carrot-leaf powder from 4 carrot plants with differing α:ß-carotene ratios was used. After 4 wk, gerbils were killed and tissues were collected and analyzed for retinoids by HPLC. RESULTS: VA+ had higher total liver VA (means ± SD 0.91 ± 0.29 µmol) than all other groups (range: 0.40-0.62) (P ≤ 0.03), and the carrot leaf treatments did not differ from baseline (0.55 ± 0.09 µmol). VA- (0.40 ± 0.23 µmol VA/liver) did not differ from the leaf-fed groups, but 30% became VA deficient (defined as <0.1 µmol VA/g liver). α-Retinol accumulated in livers and lungs and was correlated to total α-carotene consumption (R2 = 0.83 and 0.88, respectively; P < 0.0001). Bioefficacy factors ranged from 4.2 to 6.2 µg ßCE to 1 µg retinol. CONCLUSIONS: Carrot leaves maintain VA status and prevent deficiency in gerbils regardless of the α:ß-carotene ratio. The bioconversion of PACs from carrot leaves to retinol is similar to what has been reported for other green leafy vegetables, making the consumption of carrot leaves a viable method to improve dietary PAC intake.
Asunto(s)
Daucus carota , Gerbillinae/metabolismo , Hígado/metabolismo , Vitamina A/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biotransformación , Carotenoides/administración & dosificación , Carotenoides/análisis , Daucus carota/química , Masculino , Hojas de la Planta/química , Vitamina A/sangre , beta Caroteno/administración & dosificación , beta Caroteno/análisisRESUMEN
KEY MESSAGE: Inheritance, QTL mapping, phylogenetic, and transcriptome (RNA-Seq) analyses provide insight into the genetic control underlying carrot root and leaf tissue-specific anthocyanin pigmentation and identify candidate genes for root phloem pigmentation. Purple carrots can accumulate large quantities of anthocyanins in their root tissues, as well as in other plant parts. This work investigated the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root phloem and xylem, and in leaf petioles. Inheritance of anthocyanin pigmentation in these three tissues was first studied in segregating F2 and F4 populations, followed by QTL mapping of phloem and xylem anthocyanin pigments (independently) onto two genotyping by sequencing-based linkage maps, to reveal two regions in chromosome 3, namely P1 and P3, controlling pigmentation in these three tissues. Both P1 and P3 condition pigmentation in the phloem, with P3 also conditioning pigmentation in the xylem and petioles. By means of linkage mapping, phylogenetic analysis, and comparative transcriptome (RNA-Seq) analysis among carrot roots with differing purple pigmentation phenotypes, we identified candidate genes conditioning pigmentation in the phloem, the main tissue influencing total anthocyanin levels in the root. Among them, a MYB transcription factor, DcMYB7, and two cytochrome CYP450 genes with putative flavone synthase activity were identified as candidates regulating both the presence/absence of pigmentation and the concentration of anthocyanins in the root phloem. Concomitant expression patterns of DcMYB7 and eight anthocyanin structural genes were found, suggesting that DcMYB7 regulates transcription levels in the latter. Another MYB, DcMYB6, was upregulated in specific purple-rooted samples, suggesting a genotype-specific regulatory activity for this gene. These data contribute to the understanding of anthocyanin regulation in the carrot root at a tissue-specific level and maybe instrumental for improving carrot nutritional value.
Asunto(s)
Antocianinas/genética , Daucus carota/genética , Pigmentación/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Antocianinas/metabolismo , Cromosomas de las Plantas , Color , Daucus carota/crecimiento & desarrollo , Daucus carota/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1 Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation.
Asunto(s)
Cucumis sativus/genética , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Proteínas de Plantas/genética , Rayos Ultravioleta , Secuencia de Bases , Ensamble y Desensamble de Cromatina , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Clonación Molecular , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica/métodos , Frecuencia de los Genes , Genotipo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Desequilibrio de Ligamiento , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: The majority of the subspecies of Daucus carota have not yet been discriminated clearly by various molecular or morphological methods and hence their phylogeny and classification remains unresolved. Recent studies using 94 nuclear orthologs and morphological characters, and studies employing other molecular approaches were unable to distinguish clearly many of the subspecies. Fertile intercrosses among traditionally recognized subspecies are well documented. We here explore the utility of single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS) to serve as an effective molecular method to discriminate the subspecies of the D. carota complex. RESULTS: We used GBS to obtain SNPs covering all nine Daucus carota chromosomes from 162 accessions of Daucus and two related genera. To study Daucus phylogeny, we scored a total of 10,814 or 38,920 SNPs with a maximum of 10 or 30 % missing data, respectively. To investigate the subspecies of D. carota, we employed two data sets including 150 accessions: (i) rate of missing data 10 % with a total of 18,565 SNPs, and (ii) rate of missing data 30 %, totaling 43,713 SNPs. Consistent with prior results, the topology of both data sets separated species with 2n = 18 chromosome from all other species. Our results place all cultivated carrots (D. carota subsp. sativus) in a single clade. The wild members of D. carota from central Asia were on a clade with eastern members of subsp. sativus. The other subspecies of D. carota were in four clades associated with geographic groups: (1) the Balkan Peninsula and the Middle East, (2) North America and Europe, (3) North Africa exclusive of Morocco, and (4) the Iberian Peninsula and Morocco. Daucus carota subsp. maximus was discriminated, but neither it, nor subsp. gummifer (defined in a broad sense) are monophyletic. CONCLUSIONS: Our study suggests that (1) the morphotypes identified as D. carota subspecies gummifer (as currently broadly circumscribed), all confined to areas near the Atlantic Ocean and the western Mediterranean Sea, have separate origins from sympatric members of other subspecies of D. carota, (2) D. carota subsp. maximus, on two clades with some accessions of subsp. carota, can be distinguished from each other but only with poor morphological support, (3) D. carota subsp. capillifolius, well distinguished morphologically, is an apospecies relative to North African populations of D. carota subsp. carota, (4) the eastern cultivated carrots have origins closer to wild carrots from central Asia than to western cultivated carrots, and (5) large SNP data sets are suitable for species-level phylogenetic studies in Daucus.
Asunto(s)
Daucus carota/genética , Técnicas de Genotipaje/métodos , Análisis de Secuencia de ADN/métodos , Daucus carota/anatomía & histología , Ecotipo , Variación Genética , Genotipo , Funciones de Verosimilitud , Filogenia , Polimorfismo de Nucleótido Simple/genética , Especificidad de la EspecieRESUMEN
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2n = 2x = 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2n = 2x = 24 chromosomes, implying a reduction from n = 12 to n = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage-specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1-AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian-like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., , Nat. Genet. 41, 1275-1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia-Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine-scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.
Asunto(s)
Cromosomas de las Plantas/genética , Cucumis/genética , Genoma de Planta/genética , Sintenía/genética , Mapeo Cromosómico , Cucumis/citología , Reordenamiento Génico , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Modelos Genéticos , Filogenia , Ploidias , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
BACKGROUND: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations. RESULTS: Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color.All five anthocyanin glycosides previously reported in carrot, as well as RTPE, varied quantitatively in the F2 population. For the purpose of QTL analysis, a high resolution gene-derived SNP-based linkage map of carrot was constructed with 894 markers covering 635.1 cM with a 1.3 cM map resolution. A total of 15 significant QTL for all anthocyanin pigments and for RTPE mapped to six chromosomes. Eight QTL with the largest phenotypic effects mapped to two regions of chromosome 3 with co-localized QTL for several anthocyanin glycosides and for RTPE. A single dominant gene conditioning anthocyanin acylation was identified and mapped.Comparative mapping with two other carrot populations segregating for purple color indicated that carrot anthocyanin pigmentation is controlled by at least three genes, in contrast to monogenic control reported previously. CONCLUSIONS: This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.
Asunto(s)
Antocianinas/análisis , Cromosomas de las Plantas , Daucus carota/genética , Sitios de Carácter Cuantitativo , Antocianinas/biosíntesis , Antocianinas/genética , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Hibridación Genómica Comparativa , Daucus carota/química , Daucus carota/metabolismo , Ligamiento Genético , Pigmentación/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
KEY MESSAGE: Petaloid cytoplasmic male-sterile carrots exhibit overexpression of the mitochondrial atp9 genes which is associated with specific features in organization and expression of these sequences. In carrots, the Sp-cytoplasm causes transformation of stamens into petal-like organs, while plants carrying normal N-cytoplasm exhibit normal flower morphology. Our work was aimed at characterization of distinct features both cytoplasms display with respect to organization and expression of the mitochondrial atp9 genes. We show that two carrot atp9 genes, previously reported as cytoplasm-specific, in fact occur in heteroplasmic condition. In the Sp-cytoplasm the atp9-1 version dominates over atp9-3, while in N-cytoplasmic plants this proportion is reversed. Herein, we also indicate the presence and recombination activity of a 130-/172-bp sequence repeat which likely shaped the present organization of carrot atp9 loci. Furthermore, cDNA sequence examination revealed that the atp9 open reading frames (ORFs) were C to U edited in 4 nucleotide positions. One of the editing events turns a glutamine triplet into the stop codon, thereby equalizing ORFs of atp9-1 and atp9-3. A certain fraction of partially edited molecules was identified-they all represented the atp9-3 sequence. In either Sp- or N-cytoplasmic plants multiple 5' transcript termini were observed. Of these, the ones mapping more distantly from the atp9 ORF were more pronounced in case of petaloid accessions. It was also shown that despite comparable copy number of the genomic atp9 sequences, the level of the respective mRNAs was approximately 3 times higher in case of petaloid carrots. The latter fact corresponded to the elevated content of the ATP9 protein in plants carrying Sp-cytoplasm. The semi-fertile phenotype of such plants is associated with a drop in ATP9 accumulation.
Asunto(s)
Daucus carota/genética , Genes Mitocondriales , Genes de Plantas , Proteínas de Plantas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Planta/genética , Recombinación Genética , Secuencia de Bases , Western Blotting , ADN Complementario/genética , Flores/genética , Sitios Genéticos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Infertilidad Vegetal/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Edición de ARN/genética , ARN Mensajero/genética , ARN de Planta/metabolismoRESUMEN
PREMISE OF STUDY: Molecular phylogenetics of genome-scale data sets (phylogenomics) often produces phylogenetic trees with unprecedented resolution. A companion phylogenomics analysis of Daucus using 94 conserved nuclear orthologs supported many of the traditional species but showed unexpected results that require morphological analyses to help interpret them in a practical taxonomic context. METHODS: We evaluated character state distributions, stepwise discriminant analyses, canonical variate analyses, and hierarchical cluster analyses from 40 morphological characters from 81 accessions of 14 taxa of Daucus and eight species in related genera in an experimental plot. KEY RESULTS: Most characters showed tremendous variation with character state overlap across many taxa. Multivariate analyses separated the outgroup taxa easily from the Daucus ingroup. Concordant with molecular analyses, most species form phenetic groups, except the same taxa that are problematical in the molecular results: (1) the subspecies of D. carota, (2) D. sahariensis and D. syrticus, and (3) D. broteri and D. guttatus. CONCLUSIONS: Phenetic analyses, in combination with molecular data, support many Daucus species, but mostly by overlapping ranges of size and meristic variation. The subspecies of D. carota are poorly separated morphologically, are paraphyletic, and all could be recognized at the subspecies rank under D. carota. Daucus sahariensis and D. syrticus are so similar morphologically that they could be placed in synonymy. Combined molecular and morphological data support three species in accessions previously identified as D. broteri and D. guttatus. Molecular and morphological results support the new combination Daucus carota subsp. capillifolius.
Asunto(s)
Apiaceae/genética , Evolución Molecular , Apiaceae/anatomía & histología , ADN de Plantas/química , ADN de Plantas/genética , FilogeniaRESUMEN
UNLABELLED: ⢠PREMISE OF THE STUDY: We explored the utility of multiple nuclear orthologs for the taxonomic resolution of wild and cultivated carrot, Daucus species.⢠METHODS: We studied the phylogeny of 92 accessions of 13 species and two subspecies of Daucus and 15 accessions of related genera (107 accessions total) with DNA sequences of 94 nuclear orthologs. Reiterative analyses examined data of both alleles using ambiguity codes or a single allele with the highest coverage, trimmed vs. untrimmed homopolymers; pure exonic vs. pure intronic data; the use of all 94 markers vs. a reduced subset of markers; and analysis of a concatenated data set vs. a coalescent (species tree) approach.⢠KEY RESULTS: Our maximum parsimony and maximum likelihood trees were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades. They resolved multiple accessions of many different species as monophyletic with strong support, but failed to support other species. The single allele analysis gave slightly better topological resolution; trimming homopolymers failed to increase taxonomic resolution; the exonic data had a smaller proportion of parsimony-informative characters. Similar results demonstrating the same dominant topology can be obtained with many fewer markers. A Bayesian concordance analysis provided an overall similar phylogeny, but the coalescent analysis provided drastic changes in topology to all the above.⢠CONCLUSIONS: Our research highlights some difficult species groups in Daucus and misidentifications in germplasm collections. It highlights a useful subset of markers and approaches for future studies of dominant topologies in Daucus.
Asunto(s)
Alelos , Secuencia de Bases , ADN de Plantas/análisis , Daucus carota/genética , Genoma de Planta , Filogenia , Teorema de Bayes , Clasificación , Exones , Intrones , Modelos Genéticos , Análisis de Secuencia de ADNRESUMEN
Root-knot nematodes limit carrot production around the world by inducing taproot forking and galling deformities that render carrots unmarketable. In warmer climates, Meloidogyne javanica and Meloidogyne incognita are most prevalent. In F2 and F3 progeny from the cross between an Asian carrot resistant to M. javanica, PI 652188, and a susceptible carrot, resistance response was incompletely dominant with a relatively high heritability (H (2) = 0.78) and provided evidence for a single gene, designated Mj-2, contributing to resistance. Molecular markers linked to the previously described root-knot nematode resistance gene, Mj-1 on chromosome 8 derived from "Brasilia," demonstrated that Mj-2 does not map to that same locus but is on the same chromosome.
Asunto(s)
Mapeo Cromosómico , Daucus carota/genética , Genes de Plantas , Raíces de Plantas/genética , Tylenchoidea , Animales , Cruzamientos Genéticos , ADN de Plantas/genética , Daucus carota/parasitología , Repeticiones de Microsatélite , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Raíces de Plantas/parasitologíaRESUMEN
Carrot (Daucus carota L.) is a high value, nutritious, and colorful crop, but delivering carrots from seed to table can be a struggle for carrot growers. Weed competitive ability is a critical trait for crop success that carrot and its apiaceous relatives often lack owing to their characteristic slow shoot growth and erratic seedling emergence, even among genetically uniform lines. This study is the first field-based, multi-year experiment to evaluate shoot-growth trait variation over a 100-day growing season in a carrot diversity panel (N=695) that includes genetically diverse carrot accessions from the United States Department of Agriculture National Plant Germplasm System. We report phenotypic variability for shoot-growth characteristics, the first broad-sense heritability estimates for seedling emergence (0.68 < H2 < 0.80) and early-season canopy coverage ( 0.61 < H2 < 0.65), and consistent broad-sense heritability for late-season canopy height (0.76 < H2 < 0.82), indicating quantitative inheritance and potential for improvement through plant breeding. Strong correlation between emergence and canopy coverage (0.62 < r < 0.72) suggests that improvement of seedling emergence has great potential to increase yield and weed competitive ability. Accessions with high emergence and vigorous canopy growth are of immediate use to breeders targeting stand establishment, weed-tolerance, or weed-suppressant carrots, which is of particular advantage to the organic carrot production sector, reducing the costs and labor associated with herbicide application and weeding. We developed a standardized vocabulary and protocol to describe shoot-growth and facilitate collaboration and communication across carrot research groups. Our study facilitates identification and utilization of carrot genetic resources, conservation of agrobiodiversity, and development of breeding stocks for weed-competitive ability, with the long-term goal of delivering improved carrot cultivars to breeders, growers, and consumers. Accession selection can be further optimized for efficient breeding by combining shoot growth data with phenological data in this study's companion paper to identify ideotypes based on global market needs.
RESUMEN
Biennial vegetable crops are challenging to breed due to long breeding cycle times. At the same time, it is important to preserve a strong biennial growth habit, avoiding premature flowering that renders the crop unmarketable. Gene banks carry important genetic variation which may be essential to improve crop resilience, but these collections are underutilized due to lack of characterization for key traits like bolting tendency for biennial vegetable crops. Due to concerns about introducing undesirable traits such as premature flowering into elite germplasm, many accessions may not be considered for other key traits that benefit growers, leaving crops more vulnerable to pests, diseases, and abiotic stresses. In this study, we develop a method for characterizing flowering to identify accessions that are predominantly biennial, which could be incorporated into biennial breeding programs without substantially increasing the risk of annual growth habits. This should increase the use of these accessions if they are also sources of other important traits such as disease resistance. We developed the CarrotOmics flowering habit trait ontology and evaluated flowering habit in the largest (N=695), and most diverse collection of cultivated carrots studied to date. Over 80% of accessions were collected from the Eurasian supercontinent, which includes the primary and secondary centers of carrot diversity. We successfully identified untapped genetic diversity in biennial carrot germplasm (n=197 with 0% plants flowering) and predominantly-biennial germplasm (n=357 with <15% plants flowering). High broad-sense heritability for flowering habit (0.81 < H2< 0.93) indicates a strong genetic component of this trait, suggesting that these carrot accessions should be consistently biennial. Breeders can select biennial plants and eliminate annual plants from a predominantly biennial population. The establishment of the predominantly biennial subcategory nearly doubles the availability of germplasm with commercial potential and accounts for 54% of the germplasm collection we evaluated. This subcollection is a useful source of genetic diversity for breeders. This method could also be applied to other biennial vegetable genetic resources and to introduce higher levels of genetic diversity into commercial cultivars, to reduce crop genetic vulnerability. We encourage breeders and researchers of biennial crops to optimize this strategy for their particular crop.
RESUMEN
We investigated nine families of Stowaway-like miniature inverted-repeat transposable elements (MITEs) in the carrot genome, named DcSto1 to DcSto9. All of them were AT-rich and shared a highly conserved 6 bp-long TIR typical for Stowaways. The copy number of DcSto1 elements was estimated as ca. 5,000 per diploid genome. We observed preference for clustered insertions of DcSto and other MITEs. Distribution of DcSto1 hybridization signals revealed presence of DcSto1 clusters within euchromatic regions along all chromosomes. An arrangement of eight regions encompassing DcSto insertion sites, studied in detail, was highly variable among plants representing different populations of Daucus carota. All of these insertions were polymorphic which most likely suggests a very recent mobilization of those elements. Insertions of DcSto near carrot genes and presence of putative promoters, regulatory motifs, and polyA signals within their sequences might suggest a possible involvement of DcSto in the regulation of gene expression.
Asunto(s)
Elementos Transponibles de ADN , Daucus carota/genética , Genoma de Planta , Secuencias Invertidas Repetidas , Secuencia de Bases , Mapeo Cromosómico , Análisis por Conglomerados , Secuencia de Consenso , Dosificación de Gen , Orden Génico , Alineación de SecuenciaRESUMEN
Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F(2) progeny, derived from the intercross between the annual cultivar 'Criolla INTA' and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.
Asunto(s)
Daucus carota/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Genes de Plantas , Infertilidad/genética , Infertilidad/prevención & control , Mapeo Cromosómico , Cromosomas de las Plantas , Daucus carota/genética , Flores/genética , Ligamiento Genético , Polen/fisiología , Técnica del ADN Polimorfo Amplificado AleatorioRESUMEN
Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots of carrots or other species. We quantified expression of six anthocyanin biosynthetic genes [phenylalanine ammonia-lyase (PAL3), chalcone synthase (CHS1), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR1), leucoanthocyanidin dioxygenase (LDOX2), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT)] in three carrot inbreds with contrasting root color: solid purple (phloem and xylem); purple outer phloem/orange xylem; and orange phloem and xylem. Transcripts for five of these genes (CHS1, DFR1, F3H, LDOX2, PAL3) accumulated at high levels in solid purple carrots, less in purple-orange carrot, and low or no transcript in orange carrots. Gene expression coincided with anthocyanin accumulation. In contrast, UFGT expression was comparable in purple and orange carrots and relatively unchanged during root development. In addition, five anthocyanin biosynthesis genes [FLS1 (flavonol synthase), F3H, LDOX2, PAL3, and UFGT] and three anthocyanin transcription factors (DcEFR1, DcMYB3 and DcMYB5) were mapped in a population segregating for the P 1 locus that conditions purple root color. P 1 mapped to chromosome 3 and of the eight anthocyanin biosynthesis genes, only F3H and FLS1 were linked to P 1. The gene expression and mapping data suggest a coordinated regulatory control of anthocyanin expression in carrot root and establish a framework for studying the anthocyanin pathway in carrots, and they also suggest that none of the genes evaluated is a candidate for P 1.
Asunto(s)
Antocianinas/genética , Daucus carota/genética , Genes de Plantas , Antocianinas/biosíntesis , Vías Biosintéticas/genética , Mapeo Cromosómico , Color , Perfilación de la Expresión Génica , Endogamia , Fenotipo , Floema/metabolismo , Pigmentos Biológicos/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Xilema/metabolismoRESUMEN
PREMISE OF THE STUDY: Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. ⢠METHODS: Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. ⢠KEY RESULTS: Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. ⢠CONCLUSIONS: Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.