Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
2.
Nature ; 590(7847): 635-641, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33429418

RESUMEN

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Macrófagos Alveolares/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2/patogenicidad , Linfocitos T/inmunología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19/genética , Estudios de Cohortes , Humanos , Interferón gamma/inmunología , Interferones/inmunología , Interferones/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Neumonía Viral/genética , RNA-Seq , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Análisis de la Célula Individual , Linfocitos T/metabolismo , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 121(2): e2315463120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38181058

RESUMEN

Schistosomiasis is a neglected tropical disease affecting over 150 million people. Hotspots of Schistosoma transmission-communities where infection prevalence does not decline adequately with mass drug administration-present a key challenge in eliminating schistosomiasis. Current approaches to identify hotspots require evaluation 2-5 y after a baseline survey and subsequent mass drug administration. Here, we develop statistical models to predict hotspots at baseline prior to treatment comparing three common hotspot definitions, using epidemiologic, survey-based, and remote sensing data. In a reanalysis of randomized trials in 589 communities in five endemic countries, a regression model predicts whether Schistosoma mansoni infection prevalence will exceed the WHO threshold of 10% in year 5 ("prevalence hotspot") with 86% sensitivity, 74% specificity, and 93% negative predictive value (NPV; assuming 30% hotspot prevalence), and a regression model for Schistosoma haematobium achieves 90% sensitivity, 90% specificity, and 96% NPV. A random forest model predicts whether S. mansoni moderate and heavy infection prevalence will exceed a public health goal of 1% in year 5 ("intensity hotspot") with 92% sensitivity, 79% specificity, and 96% NPV, and a boosted trees model for S. haematobium achieves 77% sensitivity, 95% specificity, and 91% NPV. Baseline prevalence is a top predictor in all models. Prediction is less accurate in countries not represented in training data and for a third hotspot definition based on relative prevalence reduction over time ("persistent hotspot"). These models may be a tool to prioritize high-risk communities for more frequent surveillance or intervention against schistosomiasis, but prediction of hotspots remains a challenge.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Humanos , Animales , Administración Masiva de Medicamentos , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/epidemiología , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Schistosoma haematobium , Modelos Estadísticos
4.
Mol Biol Evol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922185

RESUMEN

Modern phylogeography aims at reconstructing the geographic movement of organisms based on their genomic sequences and spatial information. Phylogeographic approaches are often applied to pathogen sequences and therefore tend to neglect the possibility of recombination, which decouples the evolutionary and geographic histories of different parts of the genome. Genomic regions of recombining or reassorting pathogens often originate and evolve at different times and locations, which characterise their unique spatial histories. Measuring the extent of these differences requires new methods to compare geographic information on phylogenetic trees reconstructed from different parts of the genome. Here we develop for the first time a set of measures of phylogeographic incompatibility, aimed at detecting differences between geographical histories in terms of distances between phylogeographies. We study the effect of varying demography and recombination on phylogeographic incompatibilities using coalescent simulations. We further apply these measures to the evolutionary history of human and livestock pathogens, either reassorting or recombining, such as the Victoria and Yamagata lineages of influenza B and the O/Ind-2001 foot-and-mouth disease virus strain. Our results reveal diverse geographical paths of migration that characterise the origins and evolutionary histories of different viral genes and genomic segments. These incompatibility measures can be applied to any phylogeography, and more generally to any phylogeny where each tip has been assigned either a continuous or discrete "trait" independent of the sequence. We illustrate this flexibility with an analysis of the interplay between the phylogeography and phylolinguistics of Uralic-speaking human populations, hinting at patrilinear language transmission.

5.
Nature ; 565(7740): 495-499, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626970

RESUMEN

Regulatory T cells (Treg cells), a distinct subset of CD4+ T cells, are necessary for the maintenance of immune self-tolerance and homeostasis1,2. Recent studies have demonstrated that Treg cells exhibit a unique metabolic profile, characterized by an increase in mitochondrial metabolism relative to other CD4+ effector subsets3,4. Furthermore, the Treg cell lineage-defining transcription factor, Foxp3, has been shown to promote respiration5,6; however, it remains unknown whether the mitochondrial respiratory chain is required for the T cell-suppression capacity, stability and survival of Treg cells. Here we report that Treg cell-specific ablation of mitochondrial respiratory chain complex III in mice results in the development of fatal inflammatory disease early in life, without affecting Treg cell number. Mice that lack mitochondrial complex III specifically in Treg cells displayed a loss of T cell-suppression capacity without altering Treg cell proliferation and survival. Treg cells deficient in complex III showed decreased expression of genes associated with Treg function, whereas Foxp3 expression remained stable. Loss of complex III in Treg cells increased DNA methylation as well as the metabolites 2-hydroxyglutarate (2-HG) and succinate that inhibit the ten-eleven translocation (TET) family of DNA demethylases7. Thus, Treg cells require mitochondrial complex III to maintain immune regulatory gene expression and suppressive function.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Desmetilación del ADN , Metilación de ADN , Transporte de Electrón , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glutaratos/metabolismo , Inflamación/genética , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Autotolerancia/genética , Ácido Succínico/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/enzimología
6.
Am J Respir Crit Care Med ; 209(11): 1304-1313, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477657

RESUMEN

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sobrevivientes , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Estados Unidos , National Heart, Lung, and Blood Institute (U.S.) , Calidad de Vida , Encéfalo/fisiopatología
7.
Am J Transplant ; 24(4): 577-590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37977230

RESUMEN

Growing evidence implicates complement in the pathogenesis of primary graft dysfunction (PGD). We hypothesized that early complement activation postreperfusion could predispose to severe PGD grade 3 (PGD-3) at 72 hours, which is associated with worst posttransplant outcomes. Consecutive lung transplant patients (n = 253) from January 2018 through June 2023 underwent timed open allograft biopsies at the end of cold ischemia (internal control) and 30 minutes postreperfusion. PGD-3 at 72 hours occurred in 14% (35/253) of patients; 17% (44/253) revealed positive C4d staining on postreperfusion allograft biopsy, and no biopsy-related complications were encountered. Significantly more patients with PGD-3 at 72 hours had positive C4d staining at 30 minutes postreperfusion compared with those without (51% vs 12%, P < .001). Conversely, patients with positive C4d staining were significantly more likely to develop PGD-3 at 72 hours (41% vs 8%, P < .001) and experienced worse long-term outcomes. In multivariate logistic regression, positive C4d staining remained highly predictive of PGD-3 (odds ratio 7.92, 95% confidence interval 2.97-21.1, P < .001). Hence, early complement deposition in allografts is highly predictive of PGD-3 at 72 hours. Our data support future studies to evaluate the role of complement inhibition in patients with early postreperfusion complement activation to mitigate PGD and improve transplant outcomes.


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Humanos , Disfunción Primaria del Injerto/etiología , Complemento C4b , Estudios Retrospectivos , Pulmón , Proteínas del Sistema Complemento , Trasplante de Pulmón/efectos adversos , Aloinjertos , Rechazo de Injerto/etiología , Rechazo de Injerto/patología
8.
Blood ; 137(12): 1591-1602, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33275650

RESUMEN

Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term "pre-equilibrium digital enzyme-linked immunosorbent assay" (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub-picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment.


Asunto(s)
Citocinas/sangre , Enfermedades del Sistema Inmune/sangre , Pruebas en el Punto de Atención , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos
9.
Am J Respir Cell Mol Biol ; 67(1): e1-18, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35776495

RESUMEN

The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.


Asunto(s)
Enfermedades Pulmonares , Infecciones del Sistema Respiratorio , Animales , Humanos , Pulmón , Mamíferos , Material Particulado , Tórax
10.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731594

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Asunto(s)
Envejecimiento/inmunología , COVID-19/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Mucosa , Mucosa Nasal/inmunología , SARS-CoV-2/inmunología , Adolescente , Factores de Edad , Enzima Convertidora de Angiotensina 2/inmunología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mucosa Nasal/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Serina Endopeptidasas/inmunología
11.
Am J Respir Crit Care Med ; 204(8): 921-932, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34409924

RESUMEN

Rationale: Current guidelines recommend patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia receive empirical antibiotics for suspected bacterial superinfection on the basis of weak evidence. Rates of ventilator-associated pneumonia (VAP) in clinical trials of patients with SARS-CoV-2 pneumonia are unexpectedly low. Objectives: We conducted an observational single-center study to determine the prevalence and etiology of bacterial superinfection at the time of initial intubation and the incidence and etiology of subsequent bacterial VAP in patients with severe SARS-CoV-2 pneumonia. Methods: Bronchoscopic BAL fluid samples from all patients with SARS-CoV-2 pneumonia requiring mechanical ventilation were analyzed using quantitative cultures and a multiplex PCR panel. Actual antibiotic use was compared with guideline-recommended therapy. Measurements and Main Results: We analyzed 386 BAL samples from 179 patients with SARS-CoV-2 pneumonia requiring mechanical ventilation. Bacterial superinfection within 48 hours of intubation was detected in 21% of patients. Seventy-two patients (44.4%) developed at least one VAP episode (VAP incidence rate = 45.2/1,000 ventilator days); 15 (20.8%) initial VAPs were caused by difficult-to-treat pathogens. The clinical criteria did not distinguish between patients with or without bacterial superinfection. BAL-based management was associated with significantly reduced antibiotic use compared with guideline recommendations. Conclusions: In patients with SARS-CoV-2 pneumonia requiring mechanical ventilation, bacterial superinfection at the time of intubation occurs in <25% of patients. Guideline-based empirical antibiotic management at the time of intubation results in antibiotic overuse. Bacterial VAP developed in 44% of patients and could not be accurately identified in the absence of microbiologic analysis of BAL fluid.

12.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L451-L465, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34161747

RESUMEN

Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.


Asunto(s)
Lipopolisacáridos/toxicidad , Lesión Pulmonar/inmunología , Sepsis/inmunología , Animales , Calgranulina A/inmunología , Calgranulina B/inmunología , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones , Monocitos/inmunología , Monocitos/patología , Sepsis/inducido químicamente , Sepsis/patología , Factor de Necrosis Tumoral alfa/inmunología
13.
Small ; 17(31): e2101743, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34170616

RESUMEN

Integrated microfluidic cellular phenotyping platforms provide a promising means of studying a variety of inflammatory diseases mediated by cell-secreted cytokines. However, immunosensors integrated in previous microfluidic platforms lack the sensitivity to detect small signals in the cellular secretion of proinflammatory cytokines with high precision. This limitation prohibits researchers from studying cells secreting cytokines at low abundance or existing at a small population. Herein, the authors present an integrated platform named the "digital Phenoplate (dPP)," which integrates digital immunosensors into a microfluidic chip with on-chip cell assay chambers, and demonstrates ultrasensitive cellular cytokine secretory profile measurement. The integrated sensors yield a limit of detection as small as 0.25 pg mL-1 for mouse tumor necrosis factor alpha (TNF-α). Each on-chip cell assay chamber confines cells whose population ranges from ≈20 to 600 in arrayed single-cell trapping microwells. Together, these microfluidic features of the dPP simultaneously permit precise counting and image-based cytometry of individual cells while performing parallel measurements of TNF-α released from rare cells under multiple stimulant conditions for multiple samples. The dPP platform is broadly applicable to the characterization of cellular phenotypes demanding high precision and high throughput.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Animales , Citocinas , Inmunoensayo , Ratones , Microfluídica , Factor de Necrosis Tumoral alfa
14.
Am J Respir Cell Mol Biol ; 63(4): 415-423, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32609537

RESUMEN

Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.


Asunto(s)
Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología , Factores de Edad , Animales , Humanos , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología
15.
Eur Respir J ; 56(3)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747391

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has elicited a swift response by the scientific community to elucidate the pathogenesis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-induced lung injury and develop effective therapeutics. Clinical data indicate that severe COVID-19 most commonly manifests as viral pneumonia-induced acute respiratory distress syndrome (ARDS), a clinical entity mechanistically understood best in the context of influenza A virus-induced pneumonia. Similar to influenza, advanced age has emerged as the leading host risk factor for developing severe COVID-19. In this review we connect the current understanding of the SARS-CoV-2 replication cycle and host response to the clinical presentation of COVID-19, borrowing concepts from influenza A virus-induced ARDS pathogenesis and discussing how these ideas inform our evolving understanding of COVID-19-induced ARDS. We also consider important differences between COVID-19 and influenza, mainly the protean clinical presentation and associated lymphopenia of COVID-19, the contrasting role of interferon-γ in mediating the host immune response to these viruses, and the tropism for vascular endothelial cells of SARS-CoV-2, commenting on the potential limitations of influenza as a model for COVID-19. Finally, we explore hallmarks of ageing that could explain the association between advanced age and susceptibility to severe COVID-19.


Asunto(s)
Envejecimiento/fisiología , Betacoronavirus/fisiología , Infecciones por Coronavirus/complicaciones , Neumonía Viral/complicaciones , Síndrome de Dificultad Respiratoria/virología , COVID-19 , Susceptibilidad a Enfermedades , Humanos , Pandemias , SARS-CoV-2 , Replicación Viral
16.
J Immunol ; 200(9): 3188-3200, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563178

RESUMEN

Sepsis commonly results in acute and chronic brain dysfunction, which dramatically increases the morbidity associated with this common disease. Chronic brain dysfunction in animal models of sepsis survival is linked to persistent neuroinflammation and expression of multiple cytokines. However, we have found previously that microglia predominantly upregulate the damage associated molecule S100A8/A9 after sepsis. In this article, we show that S100A8/A9 is increased in the brains of patients who died of sepsis and that S100A8 is expressed in astrocytes and myeloid cells. Using a mouse model of sepsis survival, we show that S100A8/A9 is persistently expressed in the brain after sepsis. S100A9 expression is necessary for recruitment of neutrophils to the brain and for priming production of reactive oxygen species and TNF-α secretion in microglia and macrophages. However, despite improving these indices of chronic inflammation, S100A9 deficiency results in worsened anxiety-like behavior 2 wk after sepsis. Taken together, these results indicate that S100A8/A9 contributes to several facets of neuroinflammation in sepsis survivor mice, including granulocyte recruitment and priming of microglial-reactive oxygen species and cytokine production, and that these processes may be protective against anxiety behavior in sepsis survivors.


Asunto(s)
Lesiones Encefálicas/etiología , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neuroinmunomodulación/fisiología , Sepsis/complicaciones , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Conducta Animal/fisiología , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/metabolismo , Calgranulina A/inmunología , Calgranulina B/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Sepsis/inmunología , Sepsis/metabolismo
17.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30554520

RESUMEN

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Asunto(s)
Células Cultivadas/patología , Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Análisis de Secuencia de ARN , Células Madre/patología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino
19.
Am J Respir Cell Mol Biol ; 61(4): 417-428, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31264905

RESUMEN

DNA methylation represents a fundamental epigenetic mark that is associated with transcriptional repression during development, maintenance of homeostasis, and disease. In addition to methylation-sensitive PCR and targeted deep-amplicon bisulfite sequencing to measure DNA methylation at defined genomic loci, numerous unsupervised techniques exist to quantify DNA methylation on a genome-wide scale, including affinity enrichment strategies and methods involving bisulfite conversion. Both affinity-enriched and bisulfite-converted DNA can serve as input material for array hybridization or sequencing using next-generation technologies. In this practical guide to the measurement and analysis of DNA methylation, the goal is to convey basic concepts in DNA methylation biology and explore genome-scale bisulfite sequencing as the current gold standard for assessment of DNA methylation. Bisulfite conversion chemistry and library preparation are discussed in addition to a bioinformatics approach to quality assessment, trimming, alignment, and methylation calling of individual cytosine residues. Bisulfite-converted DNA presents challenges for standard next-generation sequencing library preparation protocols and data-processing pipelines, but these challenges can be met with elegant solutions that leverage the power of high-performance computing systems. Quantification of DNA methylation, data visualization, statistical approaches to compare DNA methylation between sample groups, and examples of integrating DNA methylation data with other -omics data sets are also discussed. The reader is encouraged to use this article as a foundation to pursue advanced topics in DNA methylation measurement and data analysis, particularly the application of bioinformatics and computational biology principles to generate a deeper understanding of mechanisms linking DNA methylation to cellular function.


Asunto(s)
5-Metilcitosina/análisis , Metilación de ADN , 5-Metilcitosina/inmunología , 5-Metilcitosina/aislamiento & purificación , Secuencia de Bases , Biología Computacional/métodos , Islas de CpG , ADN/química , ADN/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Metilación , Estructura Molecular , Hibridación de Ácido Nucleico , Control de Calidad , Alineación de Secuencia , Sulfitos/farmacología
20.
Am J Respir Cell Mol Biol ; 61(2): 150-161, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31368812

RESUMEN

Defining responses of the structural and immune cells in biologic systems is critically important to understanding disease states and responses to injury. This requires accurate and sensitive methods to define cell types in organ systems. The principal method to delineate the cell populations involved in these processes is flow cytometry. Although researchers increasingly use flow cytometry, technical challenges can affect its accuracy and reproducibility, thus significantly limiting scientific advancements. This challenge is particularly critical to lung immunology, as the lung is readily accessible and therefore used in preclinical and clinical studies to define potential therapeutics. Given the importance of flow cytometry in pulmonary research, the American Thoracic Society convened a working group to highlight issues and technical challenges to the performance of high-quality pulmonary flow cytometry, with a goal of improving its quality and reproducibility.


Asunto(s)
Citometría de Flujo/métodos , Citometría de Flujo/normas , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/genética , Pulmón/citología , Animales , Apoptosis , Separación Celular , Congresos como Asunto , Humanos , Pulmón/inmunología , Pulmón/patología , Células Mieloides/citología , Fenotipo , Guías de Práctica Clínica como Asunto , Reproducibilidad de los Resultados , Sociedades Médicas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA