Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(1): 36-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573521

RESUMEN

Reports of the expansion of the Asia malaria vector Anopheles stephensi mosquito into new geographic areas are increasing, which poses a threat to the elimination of urban malaria. Efficient surveillance of this vector in affected areas and early detection in new geographic areas is key to containing and controlling this species. To overcome the practical difficulties associated with the morphological identification of immature stages and adults of An. stephensi mosquitoes, we developed a species-specific PCR and a real-time PCR targeting a unique segment of the second internal transcribed spacer lacking homology to any other organism. Both PCRs can be used to identify An. stephensi mosquitoes individually or in pooled samples of mixed species, including when present in extremely low proportions (1:500). This study also reports a method for selective amplification and sequencing of partial ribosomal DNA from An. stephensi mosquitoes for their confirmation in pooled samples of mixed species.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Malaria/epidemiología , Mosquitos Vectores , Reacción en Cadena de la Polimerasa , ADN Ribosómico
2.
Med Vet Entomol ; 37(2): 209-212, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35822871

RESUMEN

There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P. humanus capitis samples collected from different geographic localities of India. DNA sequencing revealed the presence of four kdr mutations: M827I, T929I, L932F and L1014F. The presence of a classical kdr mutation L1014F, the most widely reported mutation across insect-taxa associated with the kdr-trait, is being reported for the first time in P. humanus capitis.


Asunto(s)
Insecticidas , Infestaciones por Piojos , Pediculus , Piretrinas , Humanos , Animales , Pediculus/genética , Resistencia a los Insecticidas/genética , Infestaciones por Piojos/veterinaria , Mutación , Insecticidas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
3.
Med Vet Entomol ; 36(2): 194-202, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35182085

RESUMEN

Anopheles fluviatilis James (Diptera: Culicidae) represents a complex that comprises four sibling species (S, T, U, and V). Among these, species T is widely distributed in India. Chromosomal inversion polymorphism exists among different geographic populations of An. fluviatilis species T; however, population genetic structure is not understood. This study inferred a genetic structure among six geographically diverse populations of species T using a panel of microsatellite markers. Analyses indicated a significant but low genetic differentiation among the majority of the studied populations. A significant correlation was observed between genetic and geographic distances, exhibiting stepwise migration patterns among populations.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Estructuras Genéticas , Genética de Población , India/epidemiología , Malaria/veterinaria , Mosquitos Vectores/genética
4.
Med Vet Entomol ; 36(4): 496-502, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35838413

RESUMEN

Three Anopheles stephensi biotypes have historically been differentiated through variations in the mode numbers of egg ridges and adult spiracular indices. Anopheles stephensi odorant-binding protein 1 gene (AsteObp1) sequences in Iran and Afghanistan have been recently interpreted to suggest that the three biotypes are sibling species. AsteObp1 intron 1 sequences, mode numbers of egg ridges and spiracular indices of An. stephensi in Jaffna city in Sri Lanka were therefore investigated in field-collected mosquitoes and short-term laboratory colonies established from them. AsteObp1 intron 1 sequences revealed the region to be polymorphic with four unique sequences, ASJF1-4, present in both short-term laboratory colonies and field-collected An. stephensi. The spiracular index did not relate to the mode number of egg ridges in Jaffna An. stephensi. The results suggested that numbers of egg ridges, spiracular indices and AsteObp1 intron 1 sequences were not useful for differentiating An. stephensi biotypes in Jaffna. It is proposed that the observed differences between An. stephensi mosquitoes in Jaffna now result from normal population variance in the context of rapidly changing bionomics in India and northern Sri Lanka.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Intrones , Sri Lanka , Malaria/veterinaria
5.
Exp Parasitol ; 243: 108407, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36349579

RESUMEN

The emergence of drug-resistant parasites and/or insecticide-resistant mosquito vectors necessitates developing alternative tools that either supplement or replace the conventional malaria control strategies. Trans-infecting the mosquito vector with symbionts that can either compete with a targeted pathogen or manipulate the host biology by reducing its vectorial capacity could be a promising and innovative biological approach for the control of infectious diseases This idea could be utilized to develop a novel and efficient vector control strategy; symbionts are dispersed into vector populations to reduce their ability to transmit human pathogens. Here, we reported the natural existence of Microsporidian (an obligate fungus) in the field-collected An. stephensi mosquito. However, laboratory-reared An. stephensi and An. culicifacies did not exhibit microsporidian infection. Similarly, 16s rRNA PCR identified ∼1kb amplicons in laboratory-reared An. stephensi and An. culicifacies, indicating the presence of naturally residing different bacterial species. DNA sequencing of these amplicons revealed the identities of different bacteria which are not well-characterized in terms of plasmodia-interaction activity in the Indian malaria vector. This article summarizes an overview of the previously studied microbial symbionts for their role in Plasmodium transmission along with a list of new or unexplored symbionts in the disease transmitting mosquito vectors. The summarized information could be utilized to explore such microbial symbionts for their role in Plasmodium-transmission biology in-depth and implementation in the malaria control interventions globally.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Mosquitos Vectores , Anopheles/parasitología , Malaria/prevención & control , Malaria/parasitología , ARN Ribosómico 16S/genética , Bacterias
6.
Cell Microbiol ; 22(7): e13200, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32141690

RESUMEN

Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.


Asunto(s)
Aedes/metabolismo , Aedes/virología , Virus del Dengue/fisiología , Compuestos de Amonio Cuaternario/metabolismo , Replicación Viral/fisiología , Animales , Dengue/virología , Femenino , Inmunoglobulinas/química , Mosquitos Vectores/virología , Compuestos de Amonio Cuaternario/química , Glándulas Salivales/metabolismo , Glándulas Salivales/virología , Proteínas del Envoltorio Viral
7.
Malar J ; 19(1): 417, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213479

RESUMEN

BACKGROUND: Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. METHODS: DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. RESULTS: Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. CONCLUSION: A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.


Asunto(s)
Anopheles/genética , Mosquitos Vectores/genética , Animales , ADN Espaciador Ribosómico/análisis , Complejo IV de Transporte de Electrones/análisis , Femenino , India , Malaria , Filogenia , ARN Ribosómico 28S/análisis , Especificidad de la Especie , Sri Lanka
8.
Malar J ; 19(1): 96, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103759

RESUMEN

BACKGROUND: Anopheles fluviatilis is a species-complex comprising of four cryptic species provisionally designated as species S, T, U and V. Earlier, a 28S-rDNA based allele-specific polymerase chain reaction (ASPCR) assay was developed for the differentiation of the then known three members of the An. fluviatilis complex, i.e., species S, T, and U. This assay was modified in consequence of the discovery of a new cryptic member, species V, in the Fluviatilis Complex to include identification of new species. METHODS: In the modified procedure, the ASPCR assay was performed first, followed by restriction digestion of PCR product with an enzyme BamH I, which cleaves specifically PCR amplicon of species V and the resultant PCR-RFLP products can differentiate all the four cryptic members of the complex. Morphologically identified An. fluviatilis samples were subjected to sibling species identification by modified PCR-based assay and standard cytotaxonomy. The result of PCR-based assay was validated through cytotaxonomy as well as DNA sequencing of some representative samples. RESULTS: The modified PCR-based assay differentiates all four sibling species. The result of modified PCR-based assay tested on field samples was in agreement with results of cytotaxonomy as well as DNA sequencing of representative samples. CONCLUSIONS: The modified PCR-based assay unambiguously differentiates all four known members of the An. fluviatilis species complex. This assay will be useful in studies related to bionomics of members of the Fluviatilis Complex in their role in malaria transmission.


Asunto(s)
Anopheles/clasificación , Mosquitos Vectores/clasificación , Reacción en Cadena de la Polimerasa/métodos , Animales , Femenino , Malaria , Masculino , ARN Ribosómico 28S/análisis
9.
IUBMB Life ; 71(9): 1293-1301, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30865364

RESUMEN

Proliferative cell nuclear antigen (PCNA) is the processivity factor for various DNA polymerases and it functions in response to DNA damage in eukaryotic system. Plasmodium falciparum contains two PCNAs, while PCNA1 has been attributed to DNA replication, the role of PCNA2 has been assigned to DNA damage response in erythrocytic developmental stages. Although a recent transposon mediated knockout strategy qualified pcna2 as a nonessential gene in Plasmodium berghei, a conventional homologous recombination-based knockout strategy has not been employed for this gene yet. Moreover, the cellular dynamics of PCNA2 in extraerythrocytic stages still remain elusive in Plasmodium. We attempted multiple times to knock out PbPCNA2 from the parasite genome using homologous recombination strategy without much success. However, we were able to generate PbPCNA2-GFP tagged transgenic parasites confirming that the pcna2 locus is amenable to genetic manipulation. The GFP-tagged parasites showed similar growth phenotype, compared to wild-type parasites, in both erythrocytic and sporogonic cycle, suggesting that tagging had no effect on parasite physiology. PbPCNA2 expression was also observed during the sporogonic cycle in midgut oocyst and salivary gland sporozoites. The PbPCNA2 expression was upregulated in the presence of DNA damaging agents like hydroxyurea and methyl methanesulphonate. Our inability to knock out PCNA2 suggested its essentiality in the parasite development and elevated expression during DNA damaging condition hint at a critical role of the protein in parasite physiology. © 2019 IUBMB Life, 71(9):1293-1301, 2019.


Asunto(s)
Daño del ADN/genética , Plasmodium berghei/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Protozoarias/genética , Animales , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Regulación de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Genoma/genética , Humanos , Plasmodium berghei/patogenicidad , Plasmodium falciparum/genética
10.
Malar J ; 18(1): 425, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842894

RESUMEN

BACKGROUND: Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. METHODS: A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. RESULTS: The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. CONCLUSION: These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Malaria Vivax/inmunología , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Formación de Anticuerpos , Antígenos de Protozoos/sangre , Niño , Enfermedades Endémicas , Ensayo de Inmunoadsorción Enzimática , Femenino , Geografía , Humanos , Inmunoglobulina G/sangre , India , Malaria Vivax/prevención & control , Masculino , Proteínas de la Membrana/sangre , Proteína 1 de Superficie de Merozoito/sangre , Persona de Mediana Edad , Plasmodium vivax , Proteínas Protozoarias/sangre , Estudios Seroepidemiológicos , Adulto Joven
11.
J Vector Borne Dis ; 54(1): 54-60, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28352046

RESUMEN

BACKGROUND & OBJECTIVES: Loop-mediated isothermal amplification (LAMP) is an emerging nucleic acid based diag- nostic approach that is easily adaptable to the field settings with limited technical resources. This study was aimed to evaluate the LAMP assay for the detection and identification of Plasmodium falciparum and P. vivax infection in malaria suspected cases using genus and species-specific assay. METHODS: The 18S rRNA-based LAMP assay was evaluated for diagnosis of genus Plasmodium, and species- specific diagnosis of P. falciparum and P. vivax, infection employing 317 malaria suspected cases, and the results were compared with those obtained by 18S nested PCR (n-PCR). All the samples were confirmed by microscopy for the presence of Plasmodium parasite. RESULTS: The n-PCR was positive in all Plasmodium-infected cases (n=257; P. falciparum=133; P. vivax=124) and negative in microscopy negative cases (n=58) except for two cases which were positive for P. vivax, giving a sen- sitivity of 100% (95% CI: 97.04-100%) and a specificity of 100% (95% CI: 88.45-99.5%). Genus-specific LAMP assay missed 11 (3.2%) microscopy and n-PCR confirmed vivax malaria cases. Considering PCR results as a refer- ence, LAMP was 100% sensitive and specific for P. falciparum, whereas it exhibited 95.16% sensitivity and 96.7% specificity for P. vivax. The n-PCR assay detected 10 mixed infection cases while species-specific LAMP detected five mixed infection cases of P. vivax and P. falciparum, which were not detected by microscopy. INTERPRETATION & CONCLUSION: Genus-specific LAMP assay displayed low sensitivity. Falciparum specific LAMP assay displayed high sensitivity whereas vivax specific LAMP assay displayed low sensitivity. Failed detection of vivax cases otherwise confirmed by the n-PCR assay indicates exploitation of new targets and improved detection methods to attain 100% results for P. vivax detection.


Asunto(s)
Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Coloración y Etiquetado/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Benzotiazoles , Niño , Preescolar , Diaminas , Femenino , Humanos , Lactante , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Compuestos Orgánicos/análisis , Plasmodium falciparum/genética , Plasmodium vivax/genética , Quinolinas , ARN Ribosómico 18S/genética , Sensibilidad y Especificidad , Adulto Joven
12.
J Clin Microbiol ; 54(6): 1500-1511, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27008882

RESUMEN

A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Alelos , Biología Computacional/métodos , Humanos , India , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos
13.
J Med Entomol ; 53(2): 315-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747858

RESUMEN

Knockdown resistance (kdr) in insects resulting from mutation(s) in the voltage-gated sodium channel (VGSC) gene is one of the mechanisms of resistance against DDT and the pyrethroid group of insecticides. Earlier, we reported the presence of two classic kdr mutations, i.e., L1014F and L1014S in Anopheles stephensi Liston, a major Indian malaria vector affecting mainly urban areas. This report presents the distribution of these alleles in different An. stephensi populations. Seven populations of An. stephensi from six states of India were screened for the presence of two alternative kdr mutations L1014F and L1014S using allele-specific polymerase chain reaction assays. We recorded the presence of both kdr mutations in northern Indian populations (Alwar and Gurgaon), with the preponderance of L1014S, whereas only L1014F was present in Raipur (central India) and Chennai (southern India). None of the kdr mutations were found in Ranchi in eastern India and in Mangaluru and Mysuru in southern India. This study provides evidence for a focal pattern of distribution of kdr alleles in India.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , Alelos , Animales , Femenino , India , Mutación
14.
Parasitol Res ; 115(1): 323-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26407876

RESUMEN

The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/enzimología , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Tetrahidrofolato Deshidrogenasa/genética , Alelos , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Codón , Cartilla de ADN/genética , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Dihidropteroato Sintasa/genética , Resistencia a Medicamentos/genética , Quimioterapia Combinada , Técnicas de Genotipaje , Humanos , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa/normas , Polimorfismo de Nucleótido Simple , Pirimetamina/farmacología , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/normas , Sulfadoxina/farmacología
15.
J Med Entomol ; 52(3): 408-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26334814

RESUMEN

Anopheles fluviatilis James is an important malaria vector in India, Pakistan, Nepal, and Iran. It has now been recognized as a complex of at least four sibling species-S, T, U, and V, among which species T is the most widely distributed species throughout India. The taxonomic status of these species is confusing owing to controversies prevailing in the literature. In addition, chromosomal inversion genotypes, which were considered species-diagnostic for An. fluviatilis species T, are unreliable due to the existence of polymorphism in some populations. To study the genetic diversity at population level, we isolated and characterized 20 microsatellite markers from microsatellite-enriched genomic DNA library of An. fluviatilis T, of which 18 were polymorphic while two were monomorphic. The number of alleles per locus among polymorphic markers ranged from 4 to 19, and values for observed and expected heterozygosities varied from 0.352 to 0.857 and from 0.575 to 0.933, respectively. Thirteen markers had cross-cryptic species transferability to species S and U of the Fluviatilis Complex. This study provides a promising genetic tool for the population genetic analyses of An. fluviatilis.


Asunto(s)
Anopheles/genética , Insectos Vectores/genética , Repeticiones de Microsatélite , Polimorfismo Genético , Animales , Anopheles/metabolismo , Flujo Génico , Marcadores Genéticos , India , Insectos Vectores/metabolismo , Malaria/parasitología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
16.
Indian J Med Res ; 142 Suppl: S12-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26905237

RESUMEN

BACKGROUND & OBJECTIVES: Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. METHODS: Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. RESULTS: The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. INTERPRETATION & CONCLUSIONS: For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to avert impending disease outbreaks and spread of drug-resistant malaria.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/patogenicidad , Animales , Anopheles/parasitología , Humanos , India , Insectos Vectores , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Control de Mosquitos , Plasmodium falciparum/aislamiento & purificación , Estaciones del Año
17.
Parasitology ; : 1-11, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25076418

RESUMEN

SUMMARY Erythrocytes are extensively remodelled by the malaria parasite following invasion of the cell. Plasmodium falciparum encodes numerous virulence-associated and host-cell remodelling proteins that are trafficked to the cytoplasm, the cell membrane and the surface of the infected erythrocyte. The export of soluble proteins relies on a sequence directing entry into the secretory pathways in addition to an export signal. The export signal consisting of five amino acids is termed the Plasmodium export element (PEXEL) or the vacuole transport signal (VTS). Genome mining studies have revealed that PEXEL/VTS carrying protein families have expanded dramatically in P. falciparum compared with other malaria parasite species, possibly due to lineage-specific expansion linked to the unique requirements of P. falciparum for host-cell remodelling. The functional characterization of such genes and gene families may reveal potential drug targets that could inhibit protein trafficking in infected erythrocytes. This review highlights some of the recent advances and key knowledge gaps in protein trafficking pathways in P. falciparum-infected red cells and speculates on the impact of exported gene families in the trafficking pathway.

18.
JMIR Public Health Surveill ; 10: e42050, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885497

RESUMEN

BACKGROUND: The biological characteristics of mosquito vectors vary, impacting their response to control measures. Thus, having up-to-date information on vector bionomics is essential to maintain the effectiveness of existing control strategies and tools, particularly as India aims for malaria elimination by 2030. OBJECTIVE: This study aims to assess the proportions of vector species resting indoors and outdoors, determine their preference for host biting/feeding, identify transmission sites, and evaluate the susceptibility of vectors to insecticides used in public health programs. METHODS: Mosquito collections were conducted in 13 districts across 8 Indian states from 2017 to 2020 using various methods to estimate their densities. Following morphological identification in the field, sibling species of Anopheles mosquitoes were identified molecularly using polymerase chain reaction (PCR)-specific alleles. Plasmodium falciparum and Plasmodium vivax infections in the vectors were detected using enzyme-linked immunosorbent assay (ELISA) and PCR assays. In addition, we assessed the insecticide susceptibility status of primary malaria vectors following the World Health Organization (WHO) protocol. RESULTS: Anopheles culicifacies, a primary malaria vector, was collected (with a man-hour density ranging from 3.1 to 15.9) from all states of India except those in the northeastern region. Anopheles fluviatilis, another primary vector, was collected from the states of Madhya Pradesh, Maharashtra, Karnataka, and Odisha. In Haryana and Karnataka, An. culicifacies sibling species A predominated, whereas species C and E were predominant in Madhya Pradesh and Maharashtra. An. culicifacies displayed mainly endophilic behavior across all states, except in Madhya Pradesh, where the proportion of semigravid and gravid mosquitoes was nearly half of that of unfed mosquitoes. The human blood index of An. culicifacies ranged from 0.001 to 0.220 across all study sites. The sporozoite rate of An. culicifacies ranged from 0.06 to 4.24, except in Madhya Pradesh, where none of the vector mosquitoes were found to be infected with the Plasmodium parasite. In the study area, An. culicifacies exhibited resistance to DDT (dichlorodiphenyltrichloroethane; with <39% mortality). Moreover, it showed resistance to malathion (with mortality rates ranging from 49% to 78%) in all districts except Angul in Odisha and Palwal in Haryana. In addition, resistance to deltamethrin was observed in districts of Maharashtra, Gujarat, Haryana, and Karnataka. CONCLUSIONS: Our study offers vital insights into the prevalence, resting behavior, and sibling species composition of malaria vectors in India. It is evident from our findings that resistance development in An. culicifacies, the primary vector, to synthetic pyrethroids is on the rise in the country. Furthermore, the results of our study suggest a potential change in the resting behavior of An. culicifacies in Madhya Pradesh, although further studies are required to confirm this shift definitively. These findings are essential for the development of effective vector control strategies in India, aligning with the goal of malaria elimination by 2030.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , India/epidemiología , Animales , Malaria/prevención & control , Malaria/epidemiología , Anopheles/efectos de los fármacos , Humanos , Erradicación de la Enfermedad/métodos , Insecticidas , Resistencia a los Insecticidas , Ecología
19.
Blood Cells Mol Dis ; 51(3): 195-202, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23880461

RESUMEN

In an infected erythrocyte (iRBC), renovation and decoration are crucial for malarial parasite survival, pathogenesis and reproduction. Host cell remodeling is mediated by an array of diverse parasite-encoded export proteins that traffic within iRBC. These remodeling proteins extensively modify the membrane and cytoskeleton of iRBC and help in formation of parasite-induced novel organelles such as 'Maurer's Cleft (MC), tubulovesicular network (TVN) and parasitophorous vacuole membrane (PVM) inside the iRBC. The genome sequence of Plasmodium falciparum shows expansion of export proteins, which suggests a complex requirement of these export proteins for specific pathogenesis and erythrocyte remodeling. Plasmodium helical intersperse sub-telomeric (PHIST) is a family of seventy-two small export proteins and many of its recently discovered functional characteristics suggest an intriguing putative role in modification of an iRBC. This review highlights the recent advances in parasite genomics, proteomics, and cell biology studies unraveling the host cell modification; providing a speculation on the impact of PHIST proteins in modification of the iRBC.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Interacciones Huésped-Patógeno , Humanos
20.
PLoS One ; 18(2): e0280289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730315

RESUMEN

OBJECTIVES: To investigate the differential insecticide-susceptibility of two molecular forms of Anopheles subpictus complex (A and B) against DDT and pyrethroids, the occurrence of knockdown resistance (kdr) mutations in these forms, and the association of kdr mutations with insecticide resistance. METHODS: Insecticide susceptibility tests of An. subpictus s.l., collected from coastal and inland areas of mainland India, were performed against DDT, permethrin and deltamethrin using the WHO standard insecticide susceptibility test kit. The mosquitoes were characterized for molecular forms using a diagnostic PCR developed in this study. Representative samples of An. subpictus molecular forms A and B were sequenced for a genomic region encompassing the IIS4-5 linker to the IIS6 segments of the voltage-gated sodium channel to identify kdr mutations. A common PIRA-PCR was developed for identifying L1014F-kdr mutation and used for genotyping in both molecular forms of An. subpictus. RESULTS: Molecular form A of An. subpictus was resistant to all three insecticides, i.e., DDT, Permethrin and deltamethrin, whereas Form B was categorized as 'possibly resistant' to these insecticides. Significantly higher mortalities in WHO insecticide susceptibility tests were recorded in Form B compared to Form A in sympatric populations. Molecular characterization of the IIS4-5 linker to IIS-6 segments of the voltage-gated sodium channel revealed the presence of two alternative nucleotide transversions at L1014 residue in Form A, both leading to the same amino acid change, i.e., Leu-to-Phe; however, such mutations could not be observed in Form B. PIRA-PCR-based kdr-genotyping of field populations revealed high frequencies of L1014F-kdr mutations in Form A and the absence of this mutation in Form B. The proportion of L1014F mutation was significantly higher in resistant mosquitoes following insecticide-bioassay with DDT (p<0.0001), permethrin (p<0.001) and deltamethrin (p<0.01) as compared to their susceptible counterparts. CONCLUSIONS: Significant differences in insecticide susceptibility were found between two molecular forms of An. subpictus complex in sympatric populations. The L1014F-kdr mutation was observed in Form A only, which was found to be associated with DDT, permethrin and deltamethrin resistance.


Asunto(s)
Anopheles , Insecticidas , Piretrinas , Canales de Sodio Activados por Voltaje , Animales , Insecticidas/farmacología , Anopheles/genética , Anopheles/metabolismo , Permetrina/farmacología , DDT/toxicidad , Piretrinas/toxicidad , Mutación , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Resistencia a los Insecticidas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA