Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 15(3): 210-212, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770910
2.
Protein Sci ; 31(3): 556-567, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34878680

RESUMEN

The proteasome is a powerful intracellular protease that can degrade effectively any protein, self or foreign, for regulation, quality control, or immune response. Proteins are targeted for degradation by localizing them to the proteasome, typically by ubiquitin tags. At the same time, the proteasome is built from ~33 subunits, and their assembly into the complex and activity are tuned by post-translational modifications on long disordered regions on the subunits. Molecular modeling and biochemical experiments show that some of the disordered regions of proteasomal subunits can access the substrate recognition sites. All disordered regions tested, independent of location, are constructed from amino acid sequences that escape recognition. Replacing a disordered region with a sequence that is recognized by the proteasome leads to self-degradation and, in the case of an essential subunit, cell death.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteolisis , Ubiquitina/metabolismo
3.
Methods Mol Biol ; 1844: 321-341, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242719

RESUMEN

We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.


Asunto(s)
Bioensayo , Complejo de la Endopetidasa Proteasomal/metabolismo , Bioensayo/métodos , Cromatografía de Afinidad , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Unión Proteica , Conformación Proteica , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo
4.
PLoS One ; 7(4): e34864, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22506054

RESUMEN

Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradation.


Asunto(s)
Apoproteínas/metabolismo , Mioglobina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Eucariontes , Ligandos , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Desplegamiento Proteico , Proteolisis , Cachalote
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA