Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Horm Behav ; 161: 105505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364455

RESUMEN

How female mammals adapt metabolically in response to environmental variation remains understudied in the wild, because direct measures of metabolic activity are difficult to obtain in wild populations. However, recent advances in the non-invasive measurement of fecal thyroid hormones, triiodothyronine (T3), an important regulator of metabolism, provide an opportunity to understand how female baboons living in the harsh Amboseli ecosystem in southern Kenya adapt to environmental variability and escape strict reproductive seasonality. Specifically, we assessed how a female's activity budget, diet, and concentrations of fecal T3 metabolites (mT3) changed over the course of the year and between years. We then tested which of several environmental variables (season, rainfall, and temperature) and behavioral variables (female activity budget and diet) best predicted mT3 concentrations. Finally, we determined if two important reproductive events - onset of ovarian cycling and conception of an offspring - were preceded by changes in female mT3 concentrations. We found female baboons' mT3 concentrations varied markedly across the year and between years as a function of environmental conditions. Further, changes in a female's behavior and diet only partially mediated the metabolic response to the environment. Finally, mT3 concentrations increased in the weeks prior to menarche and cycling resumption, regardless of the month or season in which cycling started. This pattern indicates that metabolic activation may be an indicator of reproductive readiness in female baboons as their energy balance is restored.


Asunto(s)
Heces , Papio , Estaciones del Año , Triyodotironina , Animales , Femenino , Papio/fisiología , Heces/química , Triyodotironina/sangre , Triyodotironina/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/sangre , Dieta/veterinaria , Reproducción/fisiología , Ambiente , Kenia
2.
Am Nat ; 202(4): 383-398, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792922

RESUMEN

AbstractOver the past 50 years, a wealth of testable, often conflicting hypotheses have been generated about the evolution of offspring sex ratio manipulation by mothers. Several of these hypotheses have received support in studies of invertebrates and some vertebrate taxa. However, their success in explaining sex ratios in mammalian taxa-especially in primates-has been mixed. Here, we assess the predictions of four different hypotheses about the evolution of biased offspring sex ratios in the baboons of the Amboseli basin in Kenya: the Trivers-Willard, female rank enhancement, local resource competition, and local resource enhancement hypotheses. Using the largest sample size ever analyzed in a primate population (n=1,372 offspring), we test the predictions of each hypothesis. Overall, we find no support for adaptive biasing of sex ratios. Offspring sex is not consistently related to maternal dominance rank or biased toward the dispersing sex, nor is it predicted by group size, population growth rates, or their interaction with maternal rank. Because our sample size confers power to detect even subtle biases in sex ratio, including modulation by environmental heterogeneity, these results suggest that adaptive biasing of offspring sex does not occur in this population.


Asunto(s)
Papio cynocephalus , Razón de Masculinidad , Animales , Femenino , Papio , Primates , Mamíferos
3.
Curr Biol ; 32(7): 1607-1615.e4, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216670

RESUMEN

Inbreeding often imposes net fitness costs,1-5 leading to the expectation that animals will engage in inbreeding avoidance when the costs of doing so are not prohibitive.4-9 However, one recent meta-analysis indicates that animals of many species do not avoid mating with kin in experimental settings,6 and another reports that behavioral inbreeding avoidance generally evolves only when kin regularly encounter each other and inbreeding costs are high.9 These results raise questions about the processes that separate kin, how these processes depend on kin class and context, and whether kin classes differ in how effectively they avoid inbreeding via mate choice-in turn, demanding detailed demographic and behavioral data within individual populations. Here, we address these questions in a wild mammal population, the baboons of the Amboseli ecosystem in Kenya. We find that death and dispersal are very effective at separating opposite-sex pairs of close adult kin. Nonetheless, adult kin pairs do sometimes co-reside, and we find strong evidence for inbreeding avoidance via mate choice in kin classes with relatedness ≥0.25. Notably, maternal kin avoid inbreeding more effectively than paternal kin despite having identical coefficients of relatedness, pointing to kin discrimination as a potential constraint on effective inbreeding avoidance. Overall, demographic and behavioral processes ensure that inbred offspring are rare in undisturbed social groups (1% of offspring). However, in an anthropogenically disturbed social group with reduced male dispersal, we find inbreeding rates 10× higher. Our study reinforces the importance of demographic and behavioral contexts for understanding the evolution of inbreeding avoidance.9.


Asunto(s)
Ecosistema , Endogamia , Animales , Kenia , Masculino , Mamíferos , Papio , Reproducción , Conducta Sexual Animal
4.
Science ; 377(6606): 635-641, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926022

RESUMEN

Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.


Asunto(s)
Hibridación Genética , Papio , Selección Genética , Animales , Genoma , Papio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA