Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 555(7697): 463-468, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539633

RESUMEN

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.


Asunto(s)
Pérdida del Embrión/genética , Pérdida del Embrión/patología , Mutación , Placenta/patología , Placentación/genética , Animales , Femenino , Ratones , Ratones Noqueados , Embarazo , Células Madre/metabolismo , Células Madre/patología , Trofoblastos/metabolismo , Trofoblastos/patología
2.
Placenta ; 113: 29-47, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34074553

RESUMEN

Intrauterine hypoxia is a feature of pregnancy complications, both at high altitude and sea level. To understand the placental response to reduced oxygen availability, small animal models of maternal inhalation hypoxia (MIH) or reduced uterine perfusion pressure (RUPP) may be utilised. The aim of this review was to compare the findings of those studies to identify the role of oxygen availability in adapting placental structural and functional phenotypes in relation to fetal outcome. It also sought to explore the evidence for the involvement of particular genes and protein signalling pathways in the placenta in mediating hypoxia driven alterations. The data available demonstrate that both MIH and RUPP can induce placental hypoxia, which affects placental structure and vascularity, as well as glucose, amino acid, calcium and possibly lipid transport capacity. In addition, changes have been observed in HIF, VEGF, insulin/IGF2, AMPK, mTOR, PI3K and PPARγ signalling, which may be key in linking together observed phenotypes under conditions of placental hypoxia. Many different manipulations have been examined, with varied outcomes depending on the intensity, timing and duration of the insult. Some manipulations have detrimental effects on placental phenotype, viability and fetal growth, whereas in others, the placenta appears to adapt to uphold fetal growth despite the challenge of low oxygen. Together these data suggest a complex response of the placenta to reduced oxygen availability, which links to changes in fetal outcomes. However, further work is required to explore the role of fetal sex, altered maternal physiology and placental molecular mechanisms to fully understand placental responses to hypoxia and their relevance for pregnancy outcome.


Asunto(s)
Hipoxia/fisiopatología , Placenta/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Feto/fisiopatología , Humanos , Hipoxia/metabolismo , Placenta/metabolismo , Embarazo , Transducción de Señal
3.
Nat Commun ; 10(1): 2792, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243271

RESUMEN

The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.


Asunto(s)
Embrión de Mamíferos/metabolismo , Análisis de Secuencia de ARN , Transcripción Genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación , Transcriptoma
4.
Dis Model Mech ; 8(11): 1467-78, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398943

RESUMEN

Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥ 21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Operón Lac , Factores de Edad , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Homocigoto , Masculino , Ratones Noqueados , Mutación , Especificidad de Órganos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA