Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Org Chem ; 89(11): 7618-7629, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38767619

RESUMEN

An efficient and scalable route to tert-butyl 3-oxo-3H-spiro[benzofuran-2,4'-piperidine]-1'-carboxylate, a central prochiral intermediate in the synthesis of SHP2 inhibitor GDC-1971 (migoprotafib), was achieved. Preparation of the title compound from readily available 2-fluorobenzaldehyde included formation of a modified Katritzky benzotriazole hemiaminal, which, upon deprotonation by n-butyllithium, participated in umpolung reactivity via 1,2-addition to tert-butyl 4-oxopiperidine-1-carboxylate (N-Boc-4-piperidone). Most notably, this reaction was developed as a robust plug-flow process that could be executed on multiple kilograms without the need for pilot-scale reaction vessels operating at low cryogenic temperatures. Treatment of the resulting tetrahedral intermediate with oxalic acid resulted in collapse to the corresponding 4-(2-fluorobenzoyl)-4-hydroxypiperidine, which was isolated as a solid via crystallization. The synthesis concluded with an optimized intramolecular SNAr reaction and final crystallization to generate tert-butyl 3-oxo-3H-spiro[benzofuran-2,4'-piperidine]-1'-carboxylate as a stable, high-quality intermediate suitable for further functionalization toward GDC-1971.

2.
J Am Chem Soc ; 144(45): 20955-20963, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36326518

RESUMEN

An efficient asymmetric synthesis of a potent KRAS G12C covalent inhibitor, GDC-6036 (1), is reported. The synthesis features a highly atroposelective Negishi coupling to construct the key C-C bond between two highly functionalized pyridine and quinazoline moieties by employing a Pd/Walphos catalytic system. Statistical modeling by comparing computational descriptors of a range of Walphos chiral bisphosphine ligands to a training set of experimental results was used to inform the selection of the best ligand, W057-2, which afforded the desired Negishi coupling product (Ra)-3 in excellent selectivity. A subsequent telescoped reaction sequence of alkoxylation, global deprotection, and acrylamide formation, followed by a final adipate salt formation, furnished GDC-6036 (1) in 40% overall yield from starting materials pyridine 5 and quinazoline 6.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas p21(ras) , Modelos Lineales , Antineoplásicos/farmacología , Quinazolinas/química , Piridinas
3.
J Org Chem ; 87(7): 4955-4960, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35317556

RESUMEN

A highly efficient asymmetric synthesis of the IDO inhibitor navoximod, featuring the stereoselective installation of two relative and two absolute stereocenters from an advanced racemic intermediate, is described. The stereocenters were set via a crystallization-induced dynamic resolution along with two selective ketone reductions: one via a biocatalytic ketoreductase transformation and one via substrate-controlled hydride delivery from LiAlH(Ot-Bu)3. Following this strategy, navoximod was synthesized in 10 steps from 2-fluorobenzaldehyde and isolated in 23% overall yield with 99.7% ee and high purity.


Asunto(s)
Inhibidores Enzimáticos , Indoles , Inhibidores Enzimáticos/farmacología , Imidazoles , Estereoisomerismo
4.
J Am Chem Soc ; 143(45): 19078-19090, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34735129

RESUMEN

We report the development of a method to diastereoselectively access tetrasubstituted alkenes via nickel-catalyzed Suzuki-Miyaura cross-couplings of enol tosylates and boronic acid esters. Either diastereomeric product was selectively accessed from a mixture of enol tosylate starting material diastereomers in a convergent reaction by judicious choice of the ligand and reaction conditions. A similar protocol also enabled a divergent synthesis of each product isomer from diastereomerically pure enol tosylates. Notably, high-throughput optimization of the monophosphine ligands was guided by chemical space analysis of the kraken library to ensure a diverse selection of ligands was examined. Stereoelectronic analysis of the results provided insight into the requirements for reactive and selective ligands in this transformation. The synthetic utility of the optimized catalytic system was then probed in the stereoselective synthesis of various tetrasubstituted alkenes, with yields up to 94% and diastereomeric ratios up to 99:1 Z/E and 93:7 E/Z observed. Moreover, a detailed computational analysis and experimental mechanistic studies provided key insights into the nature of the underlying isomerization process impacting selectivity in the cross-coupling.

5.
Anal Chem ; 92(22): 15187-15193, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33142065

RESUMEN

Automated high-throughput experimentation (HTE) is a powerful tool for scientists to explore and optimize chemical transformations by simultaneously screening yield, stereoselectivity, and impurity profiles. To analyze the HTE samples, high-throughput analysis (HTA) platforms must be fast, accurate, generic, and specific at the same time. A large amount of high-quality data is critical for the success of machine learning models in the era of big data. Conventional chiral liquid chromatography-mass spectrometry (LC/MS) HTE methods are hampered by compound co-eluting, possible ion suppression, and limited chiral column lifetime in the presence of crude reaction mixtures or complex sample matrices. To overcome these limitations, a generic and fast achiral-chiral heart-cutting two-dimensional (2D)-LC method has been developed to determine both the yield and stereoselectivity of chemical transformations within a 10 min run time. Successful implementation of the 2D-LC HTA platform in a routine drug development environment was achieved for real-world project support, with the analysis so far of over 2000 reaction mixtures prepared in the 96-well plate format. Excellent performance of the method was demonstrated by relative standard deviation (RSD) lower than 0.83% for the 1D and 2D retention times, and determination coefficients higher than 0.99. The presented HTA 2D-LC platform has had a significant impact on drug development by analyzing the HTE samples rapidly with unambiguous peak tracking and providing a robust approach for accurately generating a large amount of high-quality data in a short time.


Asunto(s)
Cromatografía Liquida/métodos , Desarrollo de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Aprendizaje Automático , Estereoisomerismo , Factores de Tiempo
6.
ACS Catal ; 14(16): 12331-12341, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39169902

RESUMEN

Palladium-catalyzed cross-couplings remain among the most robust methodologies to form carbon-carbon and carbon-heteroatom bonds. In particular, carbon-nitrogen (C-N) couplings (Buchwald-Hartwig aminations) find widespread use in fine chemicals industries. The use of base in these reactions is critical for catalyst activation and proton sequestration. Base selection also plays an important role in process design, as strongly basic conditions can impact sensitive stereocenters and result in erosion of stereochemical purity. Herein we investigate the role of a Pd catalyst in suppressing base-mediated epimerization of a sultam stereocenter during a C-N cross-coupling reaction to access the RORγ inhibitor GDC-0022. Online high-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to acquire reaction time course profiles and to delineate epimerization behavior, identify decomposition pathways, and monitor Pd-containing species. Our ability to monitor organopalladium complexes in real time by HPLC-MS provided strong evidence that the degree of epimerization was correlated to the Pd speciation in solution. Specifically, Pd(II) complexes were associated with mitigating epimerization of six-membered sultams. Additional studies showed that the suppression of epimerization in the presence of Pd(II) can impact Pd-catalyzed reactions of other substrates such as enolizable ketones, thus providing practical insight on the execution and optimization of such processes.

7.
Org Lett ; 25(19): 3417-3422, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162129

RESUMEN

A chromatography-free asymmetric synthesis of GDC-6036 (1) was achieved via a highly atroposelective Negishi coupling of aminopyridine 5 and quinazoline 6b catalyzed by 0.5 mol % [Pd(cin)Cl]2 and 1 mol % (R,R)-Chiraphite to afford the key intermediate (Ra)-3. An alkoxylation of (Ra)-3 with (S)-N-methylprolinol (4) and a global deprotection generates the penultimate heterobiaryl intermediate 2. A controlled acrylamide installation by stepwise acylation/sulfone elimination and final adipate salt formation and crystallization delivered high-purity GDC-6036 (1).

8.
J Am Chem Soc ; 134(26): 11012-25, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22668243

RESUMEN

The first theoretical study on the effects of ligands on the mechanism, reactivities, and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions of vinylcyclopropanes (VCPs) and alkynes has been performed using density functional theory (DFT) calculations. Highly efficient and selective intermolecular (5 + 2) cycloadditions of VCPs and alkynes have been achieved recently using two novel rhodium catalysts, [Rh(dnCOT)](+)SbF(6)(-) and [Rh(COD)](+)SbF(6)(-), which provide superior reactivities and regioselectivities relative to that of the previously reported [Rh(CO)(2)Cl](2) catalyst. Computationally, the high reactivities of the dnCOT and COD ligands are attributed to the steric repulsions that destabilize the Rh-product complex, the catalyst resting state in the catalytic cycle. The regioselectivities of reactions with various alkynes and different Rh catalysts are investigated, and a predictive model is provided that describes substrate-substrate and ligand-substrate steric repulsions, electronic effects, and noncovalent π/π and C-H/π interactions. In the reactions with dnCOT or COD ligands, the first new C-C bond is formed proximal to the bulky substituent on the alkyne to avoid ligand-substrate steric repulsions. This regioselectivity is reversed either by employing the smaller [Rh(CO)(2)Cl](2) catalyst to diminish the ligand-substrate repulsions or by using aryl alkynes, for which the ligand-substrate interactions become stabilizing due to π/π and C-H/π dispersion interactions. Electron-withdrawing groups on the alkyne prefer to be proximal to the first new C-C bond to maximize metal-substrate back-bonding interactions. These steric, electronic, and dispersion effects can all be utilized in designing new ligands to provide regiochemical control over product formation with high selectivities. The computational studies reveal the potential of employing the dnCOT family of ligands to achieve unique regiochemical control due to the steric influences and dispersion interactions associated with the rigid aryl substituents on the ligand.

9.
Angew Chem Int Ed Engl ; 51(11): 2736-40, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22298411

RESUMEN

Rh COT in the act: a Ni(0)-catalyzed [2+2+2+2] cycloaddition provides a high-yielding, scalable synthesis of the ligand dinaphtho[a,e]cyclooctatetraene (dnCOT). dnCOT complexation with Rh(I) gives [Rh(dnCOT)(MeCN)(2)]SbF(6), an excellent catalyst for [5+2] cycloadditions of vinylcyclopropanes and π-systems with impressive functional group compatibility.


Asunto(s)
Complejos de Coordinación/química , Rodio/química , Catálisis , Cristalografía por Rayos X , Ciclización , Ciclopropanos/síntesis química , Ciclopropanos/química , Ligandos , Conformación Molecular , Níquel/química
10.
J Am Chem Soc ; 132(8): 2532-3, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20141136

RESUMEN

The bicyclo[5.3.0]decane skeleton is one of the most commonly encountered bicyclic subunits in nature and the core scaffold of a wide range of targets of structural, biological, and therapeutic importance. Prompted by the interest in such structures, we report the first studies of metal-catalyzed [5+2] cycloadditions of vinylcyclopropanes (VCPs) and enynones. The resultant efficiently formed dienone cycloadducts serve as substrates for subsequent Nazarov cyclizations and as intermediates for single-operation [5+2]/Nazarov serial reactions and catalytic cascades. In many cases the one-flask process can be carried out in shorter reaction times and with comparable or superior yields to the two-flask procedure. Significantly, a single catalyst can be used to mediate both transformations. These [5+2]/Nazarov reaction sequences and cascades collectively provide strategically novel and facile access to the bicyclo[5.3.0]decane skeleton from simple and readily available components.

11.
J Am Chem Soc ; 132(29): 10127-35, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20586494

RESUMEN

The first studies on the regioselectivity of Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes (VCPs) and alkynes have been conducted experimentally and analyzed using density functional theory (DFT). The previously unexplored regiochemical consequences for this catalytic, intermolecular cycloaddition were determined by studying the reactions of several substituted VCPs with a range of unsymmetrical alkynes. Experimental trends were identified, and a predictive model was established. VCPs with terminal substitution on the alkene reacted with high regioselectivity (>20:1), as predicted by a theoretical model in which bulkier alkyne substituents prefer to be distal to the forming C-C bond to avoid steric repulsions. VCPs with substitution at the internal position of the alkene reacted with variable regioselectivity (ranging from >20:1 to a reversed 1:2.3), suggesting a refined model in which electron-withdrawing substituents on the alkyne decrease or reverse sterically controlled selectivity by stabilizing the transition state in which the substituent is proximal to the forming C-C bond.

12.
J Pharm Biomed Anal ; 174: 518-524, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252308

RESUMEN

Identification and localization of modifications in peptides containing multiple disulfide bonds is challenging due to inefficient fragmentation in mass spectrometry (MS) analysis. In cases where MS fragmentation techniques such as electron capture dissociation (ECD), electron transfer dissociation (ETD), and ultraviolet photodissociation (UVPD) fail to achieve efficient fragmentation, off-line disulfide bond reduction techniques are typically employed prior to MS analysis. Some commonly used reducing agents include dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP). In this work, we describe the detection and identification of an unexpected impurity that formed during the reduction of Peptide A, containing multiple disulfide bonds, while using DTT or TCEP as reducing agents and acetonitrile as a co-solvent. The DTT reduced products were found to be a mixture of the expected linear Peptide A (fully reduced) and an unknown product (>50%) with a mass corresponding to linear Peptide A plus 41 Da ([reduced-M + 41]). A series of experiments were subsequently performed to investigate the identity and origin of this impurity. Disulfide bond reduction with DTT was performed in aqueous mixtures containing acetonitrile, methanol, and deuterated acetonitrile; and with TCEP in aqueous mixtures containing acetonitrile. Additionally, glycine amino acid was used as a surrogate to investigate the mechanism. The liquid chromatography-mass spectrometry (LCMSMS) results demonstrated that the [reduced-M + 41] impurity was an acetonitrile addition on the peptide's N-terminal glycine. The corresponding impurity [M + 41] was also found in the native Peptide A (non-reduced), suggesting that small amounts of this impurity may also be generated during the synthesis in the upstream process steps. By understanding the formation of this process-related impurity [M + 41], one could potentially reduce or eliminate its presence in Peptide A through chemical controls. Finally, this observation provides caution against using acetonitrile as a co-solvent during DTT- or TCEP-promoted reduction of peptides with an uncapped N-terminus primary amine.


Asunto(s)
Acetonitrilos/química , Disulfuros/química , Ditiotreitol/química , Péptidos/química , Fosfinas/química , Aminas/química , Cromatografía Liquida , Glicina/química , Proteína Oncogénica pp60(v-src)/química , Oxidación-Reducción , Fragmentos de Péptidos/química , Dominios Proteicos , Sustancias Reductoras/química , Espectrometría de Masa por Ionización de Electrospray , Rayos Ultravioleta
13.
Org Lett ; 21(23): 9527-9531, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31738563

RESUMEN

We report that selective N-phosphorylation of aminoimidazoles results in a key steering element that controls isomeric selectivity in the condensation of ß-ethoxy acrylamides and aminoimidazoles to furnish imidazo[1,2-a]pyrimidines. We identified conditions that provide highly selective (99:1) phosphorylation at the endo- or exocyclic nitrogen. Either the 2-amino or 4-amino isomer of the (benzo)imidazo[1,2-a]pyrimidine products could be isolated in 64-95% yield. Mass spectrometric analysis and computational studies give insight into the mechanism of this exceptionally selective transformation.

14.
Org Chem Front ; 1(10): 1166-1171, 2014 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-25632347

RESUMEN

The human kinome comprises over 500 protein kinases. When mutated or over-expressed, many play critical roles in abnormal cellular functions associated with cancer, cardiovascular disease and neurological disorders. Here we report a step-economical approach to designed kinase inhibitors inspired by the potent, but non-selective, natural product staurosporine, and synthetically enabled by a novel, complexity-increasing, serialized [5 + 2]/[4 + 2] cycloaddition strategy. This function-oriented synthesis approach rapidly affords tunable scaffolds, and produced a low nanomolar inhibitor of protein kinase C.

15.
Org Lett ; 12(7): 1604-7, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20196579

RESUMEN

A cationic rhodium(I) complex--[(C(10)H(8))Rh(cod)](+) SbF(6)(-)--catalyzes the remarkably efficient intermolecular [5 + 2] cycloaddition of vinylcyclopropanes (VCPs) and various alkynes, providing cycloheptene cycloadducts in excellent yields in minutes at room temperature. The efficacy and selectivity of this catalyst are also shown in a novel diversification strategy, affording a cycloadduct library in one step from nine commercially available components.


Asunto(s)
Cicloheptanos/síntesis química , Compuestos Organometálicos/química , Rodio/química , Temperatura , Catálisis , Cationes/química , Ciclización , Cicloheptanos/química , Estructura Molecular , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo
16.
J Am Chem Soc ; 128(28): 9032-3, 2006 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-16834366

RESUMEN

A novel Pd/sulfoxide-catalyzed macrolactonization reaction of linear omega-alkenoic acids is reported that proceeds via serial ligand-catalyzed allylic C-H oxidation. The scope of this macrolactonization appears to be very broad. Aryl, alkyl, and (Z)-alpha,beta-unsaturated acids are all competent nucleophiles for this reaction, with the latter undergoing macrolactonization with no olefin isomerization. High functional group compatibility is observed that includes biologically and medicinally relevant functionality such as ortho-substituted salicylate esters, bis(indoyl)maleimides, and peptides. Evidence is provided to support the hypothesis that macrolactonization proceeds via inner-sphere functionalization from a templated pi-allylPd carboxylate intermediate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA